
Confidential Analytics with Scylla

Shamiek Mangipudi
Università della Svizzera italiana (USI)

Switzerland
shamiekm@gmail.com

Pavel Chuprikov
Télécom Paris, Institut Polytechnique de Paris

France
pavel.chuprikov@telecom-paris.fr

Gerald Prendi
Università della Svizzera italiana (USI)

Switzerland
geraldprendi18@gmail.com

Patrick Eugster
Università della Svizzera italiana (USI)

Switzerland
eugstp@usi.ch

ABSTRACT

While security concerns of data at rest and in transit have been
addressed over the years using standard cryptographic measures,
those surrounding data in use have garnered significant attention
in recent times. In response, various trusted execution environments
(TEEs) have been proposed and are on offer from leading public
cloud providers. With development and re-programming efforts,
availability, threat models, pricing, performance, etc., differing be-
tween various TEEs themselves and also with viable alternatives
such as software solutions like partially homomorphic encryption
(PHE) to protect data in use, it is imperative to have a system that
is independent of these several varying dimensions while also ef-
ficiently achieving end-to-end confidentiality guarantees on data
processing.

We propose Scylla, a mechanism-agnostic confidential analyt-
ics framework, built on top of the popular Spark data analytics
engine. Scylla utilizes a customizable combination of TEEs and
PHE schemes to achieve end-to-end confidentiality guarantees with
prime performance. Our evaluation shows that Scylla’s query exe-
cution times are 1.91× faster than state-of-the-art system Opaque
providing similar guarantees. Scylla’s novel general architecture
enables integrating latest TEEs such as AWS Nitro, AMD SEV-SNP,
and Intel TDX with zero rebuilding efforts.

CCS CONCEPTS

• Security and privacy→ Distributed systems security.

KEYWORDS

Confidential Computing, Nitro enclave, TDX, SEV-SNP, SGX, PHE

ACM Reference Format:

Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster.
2025. Confidential Analytics with Scylla. In ACM Symposium on Cloud
Computing (SoCC ’25), November 19–21, 2025, Online, . ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3772052.3772209

1 INTRODUCTION

Data analytics – as a means of learning from large data sets –
continues to gain in importance across many domains including
business, finance, governance, healthcare, and science. To deal with

Work partially supported by SNSF Bridge PoC #40B1-0_233182, ANR-22-EXES-0013
(project STeP2/F4C), Cisco Research University Funding #2853380, Hasler Foundation
#20053, and Meta Security Research #474960397718052.

increasingly large data sets in a cost-efficient manner, data analyt-
ics frameworks are commonly deployed in cloud infrastructures.
Meanwhile, according to a 2024 study by IBM, 80% of data breaches
happen in the cloud [55], exacerbating concerns over security of
data in use for cloud-based data analytics.

Many security mechanisms (in short, mechanisms) have been
proposed and promoted over the years for protecting data in use
particularly in cloud infrastructures, including software and hard-
waremechanisms. Examples for software mechanisms include cryp-
tographic systems (in short, schemes) for homomorphic encryption
(HE), such as PHE through schemes like ElGamal [38], Paillier [84],
or symmetric multiplicative homomorphic encryption (SMHE) and
symmetric additive homomorphic encryption (SAHE) [92]. For hard-
ware mechanisms, major processor vendors have introduced trusted
execution environments (TEEs) to the market, e.g., Intel software
guard extensions (SGX), Intel trust domains extensions (TDX), AMD
secure encrypted virtualization-secure nested paging (SEV-SNP). Re-
cently, Amazon has added its own hardware mechanism AWS Nitro
to EC2. Many approaches protecting big data processing use ac-
cess control and fall short due to lack of usage of cryptographic
measures [106, 107, 113, 114] although Airavat [90] adds mathemat-
ically rigorous measures like differential privacy, while others are
built around a fixed design point, i.e., a specific mechanism such as
Intel SGX [8, 17, 65, 88, 94, 96, 97, 103, 120], thus lacking generality,
and have to be redesigned for every new mechanism rolled out.

Confidential Analytics. While software and hardware mecha-
nisms offer possibilities for securing scalable data analytics frame-
works, their efficient usage presents several challenges, which we
collectively dub the site challenges.
Security: Different mechanisms – even just considering TEEs –

provide quite different security guarantees [119, Table 1] which
are often not (yet) rigorously specified. For instance, AWS Nitro
isolates enclaves using its custom Nitro system, which combines
a lightweight hypervisor, dedicated Nitro hardware and software,
and CPU hardware virtualization. While Nitro also uses memory
encryption, its enclave isolation relies on this broader hardware
and virtualization architecture, differing from the virtual ma-
chine (VM)-centric memory encryption of SEV-SNP and TDX.
Furthermore, TEEs are subject to different threats and attacks
(e.g., [23, 63, 117] for SGX, SEV-SNP, TrustZone respectively).

Independence: Major clouds (AWS, Azure, GCP) support differ-
ent sets of TEEs while new TEEs are in the making. Moreover,
while hardware mechanisms are expected to become yet more

1

https://orcid.org/0000-0002-9510-7665
https://orcid.org/0000-0002-6673-1143
https://orcid.org/0009-0003-7052-8898
https://orcid.org/0000-0003-3864-9078
https://doi.org/10.1145/3772052.3772209

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

efficient, some software mechanisms like certain PHE schemes
are still competitive in terms of performance in distributed se-
tups [71], and also can deal with worries of internal threats at
cloud providers and hardware vendors and government-required
back doors. Besides, with mechanisms not uniformly available,
requiring different programmability efforts, possessing different
development interfaces, it is vital to have a framework which is
independent of these variables, so as to save system rebuilding/-
porting efforts for every upcoming mechanism.

Transparency: Data analysts are typically not expert program-
mers, let alone security experts, and cannot be expected to man-
ually program with security mechanisms. Meanwhile, even just
within the class of TEEs, various solutions possess distinct mi-
croarchitectural features, hardware interfaces, functionalities,
underlying hardware architectures [75] which adds to the diffi-
culty of using them.

Efficiency: As data analytics relies on ever-larger datasets, dif-
ferences in performance overhead of mechanisms [47, 75, 76],
even though seemingly small, become substantial at scale. This
substantial overhead difference directly leads to significantly
increased query execution times and higher cloud costs, a de-
terrent for many potential users who may then forgo security
measures or avoid cloud adoption altogether, thereby losing out
on significant opportunities.
The need for T and E has in the past motivated various ap-

proaches specifically for confidential data analytics (e.g., [85, 93,
120]) beyond platforms for cloud security focusing on more general
computing and programming models (e.g., [1, 110]), yet the quest
for a solution addressing all four site requirements in a satisfactory
manner remains elusive.

Scylla. We propose Scylla, a novel solution for efficient con-
fidential analytics that is transparent to users while being secure
yet platform-independent. More specifically, our system design is
security-centered on the recently proposed guarantee of generalized
policy-based non-interference [71] that allows for the integration of
different mechanisms by means of a novel extended security policy
(S), while being independent of any specific mechanism (I). Our
design introduces a secure runtime, and a query processing pipeline
for automated transformation and verification of queries expressed
by users in a security-agnostic manner (T). The pipeline includes
a framework for easily plugging in new software and hardware
mechanisms. This framework comprises APIs as well as a domain-
specific language (DSL) to express heuristics for using arbitrary
combinations of mechanisms as part of automated query trans-
formation. The ability to combine different mechanisms supports
optimal performance (E), besides portability and interoperability.

Contributions. In short this paper’s key contributions are:
• A novel approach with a general architecture for end-to-end
confidential analytics, independent of software and hardware
mechanisms.

• Unified abstractions – capturing differences between TEEs and
PHEs schemes, respective guarantees, performance characteris-
tics, availability in cloud providers – decoupling three aspects:
security policy, mechanism definition/integration, and heuristics
for automated mechanism use.

• A framework for plugging in mechanisms (supporting mecha-
nisms at different abstraction levels, e.g., NativeTEE, VirtualTEE)
and a Scala DSL for expressing novel rich transformation heuris-
tics to efficiently employ the mechanisms. Our DSL allows to
assign mechanisms in arbitrary orders and combinations.

• An efficient design of our approach and its implementation as
extension to Apache Spark (Spark core, Spark standalone cluster
manager, and Spark SQL).

• Support for Nitro including a novel communication setup be-
tween remote Nitro enclaves (NEs) using transparent socket im-
personation (TSI).

• An evaluation of our system in 2 different clouds – AWS and
Azure – using 5 PHE schemes and 4 hardware mechanisms SGX,
SEV-SNP, TDX, and Nitro. To the best of our knowledge, this is
the first study of Nitro’s performance at scale. Scylla adds minor
overheads through its general architecture (I), and its ability to
combine mechanisms leads to better efficiency (E). On average,
when using PHE, Scylla is 1.02× faster than closest related
work Hydra [71]. When using SGX, Scylla is 1.91× faster than
Opaque [120], and Hydra is 1.19× faster than Scylla. However,
neither Opaque nor Hydra support SEV-SNP, TDX, or Nitro. A
novel heuristic obtained by changing only a few lines of code
further increases Scylla’s performance by 1.36×.

Roadmap. § 2 presents background information on the mecha-
nisms supported in Scylla and on Spark which Scylla builds on.
§ 3 overviews Scylla’s architecture and workflow; § 4 presents
Scylla’s threat model, security policy, core language, and guaran-
tees. § 5 introduces Scylla’s API and DSL, and § 6 presents Scylla’s
runtime design. § 7 evaluates Scylla in comparison with existing
systems. § 8 contrasts Scylla with related work. § 9 draws final
conclusions.

2 BACKGROUND

This section presents pertinent background on TEEs and HE. We
first give a general description of these technologies, and then
expand on specific realizations used in Scylla – SGX, TDX, SEV-
SNP, Nitro, and PHE – and present performance considerations.

Trusted Execution Environments. A TEE enables isolated execu-
tion contexts that enjoy strong protection guarantees – confiden-
tiality and integrity of code and data– from the rest of the system
including host OS, hypervisor, firmware etc.

Intel software guard extensions (SGX) provides the original ab-
straction of user-space enclaves, isolated execution contexts im-
plemented as secure regions of user-mode address space. Intel
SGX protects confidentiality and integrity of pages in an enclave
while relying on the untrusted host OS for scheduling, memory-
management, I/O, etc. Enclave pages are encrypted and integrity
protected by a dedicated on-die component, the memory encryp-
tion engine (MEE), when written to memory. Decryption occurs
transparently on the die upon valid access of an enclave page. The
latest version SGXv2 [74, 98, 111] has increased the capacity of the
protected memory region to up to 512 GB per socket and reduced
overhead of memory protection.

Trust domains extensions (TDX) [56] is the latest architectural
extension from Intel providing TEE capabilities. TDX allows the

2

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

filter
=

filter
range

select
+

select
x

join agg sort group
by

match

Queries on encrypted data

100

101

102

103

T
im

e
(s

ec
on

ds
)

SGXAz

SEVAz

TDXAz

NitroAWS

PHEAWS

FinalDecr

Figure 1: Microbenchmarks on encrypted data (AES-GCM [73] for SGX, secure encrypted virtual-
ization (SEV), TDX, Nitro, and compatible schemes for PHE) for various mechanisms. Execution

times (log) with final decryption time (as decryption of collected result on the driver/client-side

completes the query) stacked on top.

Spark SQL

Spark core

Cluster manager

Catalyst optimizer
Dataframe API

Scheduler
RDDs API

Spark standalone

Figure 2: Scylla stack as

extension of Spark.

deployment of virtual machines in secure-arbitration mode (SEAM)
with encrypted CPU state and memory, integrity protection, and
remote attestation (RA). This hardware-assisted isolation for VMs,
termed trust domains (TDs), minimizes the attack surface exposed
to a potentially untrustworthy hypervisor or host operating system
(OS).

AMD secure encrypted virtualization (SEV) [4] uses guest spe-
cific encryption keys to isolate entire VMs as kernel-space enclaves
which ensures confidentiality and integrity of VMs while relying on
the untrusted hypervisor for memory-management, I/O, etc. SEV’s
latest variant SEV-SNP [3] builds upon SEV and SEV-ES [57] while
introducing new hardware-based security protection, e.g., strong
memory integrity protection to prevent malicious hypervisor-based
attacks that rely on guest data corruption, aliasing, replay, and
various other attack vectors. SEV-SNP (hereon called SEV) has
additional optional security enhancements which offer stronger
protection around interrupt behavior and certain side channel at-
tacks.

The AWS Nitro system [11, 13] enables creation of isolated en-
vironments called Nitro enclaves (NEs) [9, 10, 12] to protect and
process highly trusted code and highly sensitive data. NEs offer
an isolated, hardened, and highly constrained environment to host
security-critical applications. The Nitro system [13] – the backbone
of NEs – carves out resources from the parent instance to create
another fully protected independent VM environment to launch an
enclave. The Nitro system is built using secure, encrypted, authen-
ticated microservices; it is itself isolated and operates in a substrate
network, with no internet or general-purpose access. The Nitro
system consists of three components: 1. a series of Nitro cards, 2.
a Nitro security chip, and 3. a Nitro hypervisor. 1. includes cards
for virtual private cloud (VPC), elastic block store (EBS), and local
nonvolatile memory express (NVMe) storage, and the Nitro con-
troller. The Nitro controller is the primary card which along with
its secure boot process provides the hardware root of trust in a
Nitro system. 2. provides a simple hardware-based root of trust
and extends the Nitro controller chain of trust to the system main
board. It is integrated into the motherboard, protecting hardware
resources/firmware by intercepting and moderating all operations
to them. All write access from the instance to non-volatile storage
is blocked in hardware by this security chip. The Nitro system pro-
vides near-metal capabilities (nearly indistinguishable as measured

at Netflix, overhead less than 1% [16, 49]) by offloading virtualiza-
tion overhead to dedicated hardware and software through the use
of Nitro cards, which further minimizes the attack surface of the hy-
pervisor. Offloading simplifies the overall stack thereby minimizing
the trusted computing base (TCB). Enclaves include cryptographic
attestation to ensure that only authorized code is running, and
integrate with the AWS key management service (KMS), so that only
enclaves can access sensitive material. The Nitro system creates a
new VM, attests and runs the enclave image to create a NE. Isolation
is enforced in hardware through a combination of Nitro virtualiza-
tion and well-tested in-CPU hardware virtualization. The parent
instance has no access or visibility of the enclave’s memory or core.
This design is simpler, more robust than memory encryption. No
data volume or access patterns are revealed. Enclave memory is
never malleable.

Homomorphic Encryption. Homomorphic encryption (HE) refers
to specialized schemes that allow computations to be performed
directly on encrypted values. HE includes fully homomorphic en-
cryption (FHE) and PHE. FHE supports arbitrary computations
over encrypted data. However, despite significant improvements
(e.g. [30]), FHE can exhibit high overhead for complex computa-
tions [42–44]. Instead, in this paper we focus on PHE [89]. A scheme
is said to be partially homomorphic with respect to certain opera-
tions if it enables those operations on encrypted data by altering a
given ciphertext or combining a set of ciphertexts to get a new one.

Similar in function to PHE is property-preserving encryption (PPE).
As the name suggests, the ciphertext of these schemes preserve
some properties of the underlying plaintext, allowing some opera-
tions to be applied directly on the ciphertext. For example, order-
preserving encryption (OPE) allows order comparisons such as “≤”
and “≥” on ciphertexts. For simplicity and brevity in the following
we may collectively refer to PHE and PPE schemes as PHE.

TEE vs. PHE: Performance Trade-Offs. TEEs offer code integrity
via RA, while PHE does not. PHE schemes are typically imple-
mented via portable easily inspectable code, while TEEs, even for
confidentiality, require respective manufacturers to be trusted, as
individual hardware elements are not easily inspectable (even if
their designs are).

3

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

PHE schemes remain performance-wise also relevant for confi-
dentiality in distributed setups. Consider Fig. 1 showingmicrobench-
mark results on 1M rows of synthetic data for SQL operators using
various mechanisms – PHE and Nitro in AWS; SGX, SEV, and TDX
in Azure. As can be seen PHE can be quite efficient. This is be-
cause in a distributed setup the operator can execute directly on
ciphertext, whereas with TEEs data received (resp. sent) must be
decrypted (resp. encrypted) before (resp. after) applying an operator.
Including the final decryption latency (see mauve parts stacked on
top of bars in the graph) of the result at the end user can flip the
end-to-end performance trends for some PHE schemes/operators.

Spark. Apache Spark is a distributed cluster computing frame-
work designed to be fast, scalable, and fault-tolerant [116]. A Spark
application runs on top of a pluggable external cluster manager
which manages resource allocation from a distributed cluster of
machines required to run the application. Scylla utilizes a custom
cluster manager built on Spark’s standalone cluster manager to
launch the application.

Spark core primarily consists of the resilient distributed datasets
(RDDs) API for manipulating a distributed collection of objects
partitioned across a cluster, and the driver. Spark SQL runs on top
of Spark core and introduces a new dataframe abstraction for struc-
tured data representing a distributed collection of rows with same
schema which boasts a tight integration with full programming lan-
guages like Scala. This enables intermixing procedural Spark code
written using functional programming constructs and relational
code leading to more optimized execution compared to what native
Spark API can achieve. Spark SQL, implemented using Catalyst–an
extensible query optimizer–enables the addition of new rule-based
and cost-based optimizations. Scylla builds on this foundation but
significantly modifies Catalyst and Spark core, augmenting their
fundamental functionality to efficiently address the site challenges.
Fig. 2 shows customized Spark components of Scylla’s stack in
darker shades (i.e., dark green , dark blue , and dark yellow), and
vanilla components in lighter shades.

Scylla
cluster
manager

Driver
Scylla session

Scylla context

Nitro VM

Nitro enclave
Executor

SGX-enabled VM
Executor

SGX

Confidential VM
Executor

Figure 3: Scylla’s general architecture supports enclave-like

NativeTEEs such as SGX, and VM-like VirtualTEEs such as Nitro

enclave, SEV, and TDX.

3 DESIGN

This section overviews the design of the Scylla system. Fig. 3
outlines Scylla’s runtime architecture.

3.1 Architecture

An external service called Scylla cluster manager (SCM), our custom
security-aware cluster manager, is at the core of Scylla’s architec-
ture. Inspired by and built on top of Spark’s own standalone cluster
manager, SCM enables launching executor processes which can
be either (a) hosted within VM-like VirtualTEEs (e.g., confidential
VMs (CVMs) like SEV, Nitro, TDX), or (b) have access to native
enclave-like NativeTEEs (e.g., SGX) hardware mechanisms. SCM
can easily be extended with other hardware security mechanisms,
for instance, a straightforward lift and shift approach would work
for a new CVM due to Scylla’s general and efficient design. We
discuss Scylla’s configuration and extension API in § 5.

To cover a broad range of TEEs, Scylla supports a variety of
communication channels: vsock [66] to talk to executors hosted
in Nitro enclaves, SGX enclaves are accessed by Scylla execu-
tors via Java native interface (JNI) , while executors in other CVMs
such as SEV straightaway use the host’s network stack. Once a
pre-complied Scylla application Java archive (JAR) holding ana-
lytics queries is submitted to SCM, the Spark driver is deployed on
a host within Client domain and the application starts executing.
The driver runs user code which makes use of ScyllaSparkSession
that internally interacts with the Spark cluster (represented by
ScyllaSparkContext). The driver, respecting providers and TEE
availability, schedules tasks on executors.

3.2 Workflow

Fig. 4 has Scylla’s workflow which spans across Spark SQL and
Spark core . Scylla introduces customizations at public extension
points within Spark SQL’s query execution – the primary pipeline
for executing relational queries in Spark offering access to inter-
mediate execution phases such as logical planning, optimization,
and physical planning. The Spark SQL portion ingests a SQL query
as a dataframe constructed using Spark SQL’s API. Then along
the query execution pipeline, a sequence of transformations and
optimizations are applied to the logical and physical plans derived
from the SQL query before creating the final executed plan, which
is handed over to Scylla directed acyclic graph (DAG) scheduler in
the Spark core portion where a DAG of stages and tasks is created
from the executed plan. Scylla task scheduler schedules the tasks
corresponding to data partitions on executors. Cryptographic keys
are provisioned to the spawned executors once RA is successful.
Executors then decrypt→ compute→ encrypt and return results
to the driver where they are collected and decrypted. During ex-
ecution, data is only ever decrypted either in executors hosted in
CVMs (VirtualTEEs) or in enclaves (NativeTEEs) running alongside
executors, always in accordance with security policy P.

4 SECURITY

Scylla’s power comes from the ability to utilize an extensible set
of hardware (TEEs) and software (PHE schemes) mechanisms, and
support different cloud providers or simply providers. A provider
represents the internet domain Inet or a specific (type of) compute

4

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

SQL
query

Analyzer
Analyzed
logical plan

Scylla
converter

Scylla
plan

Scylla
optimizer

Optimized
Secure Scylla plan

Scylla query
planner

Physical
plan

Scylla query
preparation

Executed
plan

Scylla DAG
scheduler

DAG of Scylla
stages + tasks

Scylla task
scheduler

Scylla
executors

Collected
result

Figure 4: Scylla workflow with Spark SQL and Spark core

portions encoded using background colors.

infrastructure where query execution may take place, examples
being public clouds (e.g., AWS or Azure), private clouds, but also client
domains (Client). The set of hardware mechanisms is denoted as
T , the set of schemes as S, and the set of providers as P. We denote
all mechanisms as M = T ∪ S. (Naturally, T ∩ S = ∅).

4.1 Threat Model

Mechanisms can provide different guarantees, and be subject to
attacks of different types, e.g., side-channel [21, 22, 36, 54, 69, 77,
99, 109, 118], physical [60, 70], fault injection [29, 81, 100], cache
[6, 48, 50, 51, 62, 68, 83, 115], controlled-channel [23, 79, 112], and
transient-execution [19, 20, 25, 27, 58, 59, 95, 108] attacks. The ease
of actually mounting such attacks will depend on many parame-
ters of the cloud infrastructure including the cloud programming
abstraction level provided (e.g., platform-as-a-service vs software-
as-a-service), the exact hardware and software stack, possibly down
to specific versions of components, etc.

To reconcile these constraints Scylla assumes an honest but
curious (HbC) adversary at the basis. Scylla formally guarantees
security properties for an HbC adversary, and in general safeguards
against the strongest adversary that the weakest mechanism in the
system can protect against, with HbC being a safe underapproxi-
mation. Protection against adversaries is based on the mechanisms
employed as configured through the security policy which is deter-
mined by the security expert who decides company policies defining
which mechanisms and systems to trust for what. Through it’s se-
curity policy, Scylla allows the security expert to assign/exclude
mechanisms appropriately for different security labels/levels based
on strength or different criteria thereof, as currently there is no
established comprehensive taxonomy that classifies all attacks ac-
cording to adversary strength. We do not formally dwell on runtime
security and end-to-end guarantees against stronger adversaries.
Scylla adopts a complementary approach to works that protect
against specialized attack vectors [2, 5] against mechanisms. The
security policy can combat yet to be discovered attacks/vulnerabili-
ties, by preventing usage of such afflicted mechanisms, via simple
updates to the security policy.

4.2 Security Policy

The security level is thus the basic notion of Scylla’s security
policy following multi-level security (MLS) capturing custom confi-
dentiality requirements for data. We denote the set of possible levels
as L. As in previous works, we assume the levels are arranged as a
lattice, allowing some (but not all) levels to be compared with “no
more secure than”, denoted as 𝑙1 ≼ 𝑙2, and any two levels 𝑙1 and 𝑙2

to be merged into 𝑙1 ⊔ 𝑙2 ∈ L so that 𝑙1 ≼ 𝑙1 ⊔ 𝑙2 and 𝑙2 ≼ 𝑙1 ⊔ 𝑙2.
A data manager, possibly with assistance from the security expert,
labels data with respective levels (cf. prior work [78]).

Scylla’s security policy P extends the standard MLS policy,
where the latter policy essentially defines which principal has access
to what data. The extension chiefly includes a mapping that asso-
ciates with every security level of L a set of mechanism-provider
pairs that are deemed sufficient for protecting data at that level, thus
defining how data is to be accessed (when/where accessible), and is
used by Scylla to guide query execution. Scylla thus streamlines
the security expert’s job by capturing relevant policies as an artifact,
used by the system directly, based on the paradigm of security-
policy-as-code [31] (which is similar in spirit to infrastructure-as-
code [80], elasticity programming [91], or intent-based network-
ing [40]). The mapping of P can be easily updated any time after
deployment, with immediate application for any subsequently exe-
cuted queries.

More formally, P is a function from L into a subset of P ×M⊥,
where M⊥ = M ∪ {⊥} with ⊥ signifying “no protection” (plain-
text data processing). List. 1 details the YAML-based configuration
language to be used by a security expert for specifying the security
policy. The lattice defines the set of security labels and their rela-
tion to each other, while policy’s constraints define for each label
and provider the set of required security mechanisms, which can be
either a tee or a scheme, which can possibly be null denoting plain-
text. Finally autoclosure controls whether the constraints should
be automatically closed by Scylla according to properties outlined
shortly afterwards. List. 1 also shows a simple three level lattice
(Pub ≼ Low ≼ High) and an example security policy – both used later
on for evaluation in § 7. As shown in List. 1, for High security level
we have P(High) = {⟨Azure, SGX⟩, ⟨Azure, AES-GCM⟩}, where Azure

denotes the provider and SGX and AES-GCM the respective hardware
mechanism (TEE) and software mechanism (scheme), and that High
data must either be inside SGX or be encrypted with AES-GCM; Low
data requires a scheme (Paillier in this case); public data represented
by P(Pub) = {⟨AWS,⊥⟩} can be stored as plaintext; and transmission
between any providers (cf. Inet provider) of High (and thus all) data
similarly uses AES-GCM, while the Client admits plaintext for High
(and thus all data). We impose the following natural requirements,
via autoclosure, on P: (𝑝,⊥) ∈ P(𝑙) implies (𝑝,𝑚) ∈ P(𝑙) for all
𝑚 ∈ M, and P(𝑙) ⊆ P(𝑙 ′) for all 𝑙 ′ ≼ 𝑙 .

Security levels of L are then assigned to columns of input rela-
tions to specify their confidentiality requirements via a security-
aware relational schemata 𝜌 , which maps table names to relation
types, i.e., 𝜌 : 𝑛𝑎𝑚𝑒 ↦→ 𝑇 {𝑓 : (𝑑, 𝑙)}. Anothermapping 𝜌𝑝 : 𝑛𝑎𝑚𝑒 ↦→
𝑝 specifies for each input relation the provider storing that relation.
Via 𝜌𝑝 Scylla ensures: (a) schemes “at rest” satisfy P, and (b) the
transfer of input relations between providers via the internet is also
protected according to P.

4.3 Secure Query Language

Scylla’s guarantees are based on a language abstracting SQL-like
data analytics queries. Fig. 5 presents Scylla’s core language that
brings together all the elements presented so far, while exposing a
security-agnostic interface to data analysts. Types 𝜅 cover scalars,

5

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

1 /* General definition */
2 lattice:
3 label_name: /*⪰*/ [label_name]
4 policy:
5 constraints:
6 label_name:
7 - provider_name:
8 {tee: tee_name} |
9 {scheme: scheme_name?}
10 autoclosure: bool
11 /* Example */
12 lattice:
13 {Pub: [], Low: [Pub], High: [Low]}
14 policy:
15 constraints:
16 Pub: {AWS: [{ scheme: null }]}
17 Low: {AWS: [{ scheme: Paillier }]}
18 High:
19 Azure: [{tee: SGX},
20 {scheme: AES -GCM} /* preset */]
21 Inet: [{ scheme: AES -GCM}] # preset
22 Client: [{ scheme: null}] # preset
23 autoclosure: true

Listing 1: Security policy definition with example (sec.yaml).

records, relations, and functions, all building on top of a set of prim-
itive types 𝑑 , annotated with security levels 𝑙 ∈ L and schemes
𝑠 ∈ S⊥. Both levels and schemes are automatically determined by
Scylla (the former from annotated datasets). Values 𝑣 , i.e., fully
computed expressions, directly correspond to the types, the only
exception being a field name 𝑓 which is only used when selecting
a grouping field. Most interesting are the expressions (or queries),
which include common constructs such as variables, function calls,
or binary operators. In addition, there are two constructs funda-
mental to analytics: input relation references table(𝑛𝑎𝑚𝑒) and rela-
tional operators 𝜃 𝑝, 𝑡 (𝑒). The latter are automatically annotated by
Scylla (see § 5.2) with a provider 𝑝 and an (optional) TEE where
the respective relational operator will be executed. Finally, there are
encryption/decryption operations, also introduced automatically
by Scylla.

4.4 Guarantees

Scylla’s guarantee is a form of noninterference (NI) [45] based on
the generalized policy-based NI notion called S-noninterference (S-
NI) [71]. S-NI generalizes NI to a custom MLS lattice defined as
part of a policy S. Scylla uses a different security policy P and
different core language, so we dub its guarantee correspondingly
P-noninterference (P-NI). Scylla provides the following guarantee:

Definition 4.1 (P-noninterference P-NI(𝑒)𝜌,𝑝). Expression 𝑒 has
P-noninterference property P-NI(𝑒)𝜌,𝑝 if and only if, for every 𝑙 in
L, for any two 𝜌-stores db1 and db2, db1 ∼𝑙𝜌 db2, and any two
values 𝑣1 and 𝑣2, 𝑒 ⇓db1 𝑣1 and 𝑒 ⇓db2 𝑣2, it holds that 𝑣1 ∼𝑝,𝑙 𝑣2.

Here, 𝜌 is the relational schemata described earlier, db1 ∼𝑙𝜌 db2
states that two stores db1 and db2 differ only in data with security
level 𝑙 , 𝑣1 ∼𝑝,𝑙 𝑣2 denotes indistinguishability between values 𝑣1
and 𝑣2 by an adversary with respect to whom 𝑙 must guarantee

TEE 𝑡F ⊥ | SGX | SEV | Nitro | TDX | ...
Scheme 𝑠F ⊥ | AES-GCM | ElGamal | Paillier | ...
Provider 𝑝F Client | AWS | Azure | GCP | Inet | ...

Type 𝜅 F (𝑑 𝑠 , 𝑙) | {𝑓 : (𝑑 𝑠 , 𝑙)} | 𝑇 {𝑓 : (𝑑 𝑠 , 𝑙)} | 𝜅 → 𝜅

Prim. data type 𝑑 F Integer | Double | String | Boolean | ...
Value 𝑣 F 𝑐 𝑠 | 𝜆(𝑥 : 𝜅) . 𝑒 | {𝑓 : 𝑣} |𝑇 { 𝑓 : 𝑣} | 𝑓

Expression 𝑒 F 𝑣 | 𝑥 | 𝑒 (𝑒) | ⊕(𝑒) | {𝑓 : 𝑒} | 𝜃 𝑝, 𝑡 (𝑒) |
𝑒.𝑓 | table(𝑛𝑎𝑚𝑒) | encr(𝑒, 𝑠) | decr(𝑒)

Prim. operator ⊕F + | − | ... | ∧ | ∨ | ...
Query operator 𝜃 F filter | proj | cross | agg | ...

Figure 5: Syntax and parameterization of Scylla’s core query

language. Terms/items in 𝑟𝑒𝑑 backlit are security annotations

not used by data analysts but generated automatically during

query transformation. Similarly, table values in𝑏𝑙𝑢𝑒 are only

present at runtime. The superscript 𝑠 in the base type 𝑑𝑠

denotes either a plaintext (𝑠 = ⊥) or encrypted (𝑠 ∈ S) value
of primitive type 𝑑 . An overline represents a sequence.

confidentiality, under provider 𝑝 . We use 𝑒 ⇓db 𝑣 to denote that the
result of executing Scylla query 𝑒 , given inputs db, is 𝑣 . Intuitively
this property means that an adversary thwarted by any of mecha-
nisms for level 𝑙 , as per P, observes indistinguishable values across
two executions of a query (aka an expression 𝑒) on two stores, say
db1 and db2, differing only in data with security level 𝑙 . As input
relations can contain many levels 𝑙 , Def. 4.1 considers all levels 𝑙 in
L to ensure confidentiality guarantees for full query execution.

Our guarantee P-NI differs from that of S-NI, as the latter as-
sumes mappings between levels and scheme-domain pairs, where
domains consist of TEEs and providers. Our approach is more
streamlined as it does not allow schemes and TEEs to be combined
for the same data processing. We see very few cases where such
layering substantially strengthens security guarantees, and believe
that ourmore pragmatic choice simplifies the design of security poli-
cies. (Data encrypted with a given scheme can still transit through
a TEE in Scylla without being decrypted if it is not being operated
on in that TEE.)

We now provide proofs that our guarantees hold for all queries
passing Scylla’s type checking. The proof for Def. 4.1 makes use
of the following result from the S-NI formal framework [71, Th. 1],
where all S-NI entities conflicting in notation with P-NI are an-
notated with the tilde ∼ as shown in Thm. 4.1. We then formally
connect the P-NI and S-NI frameworks using Lem. 4.2.

Theorem 4.1 (S-NI Soundness). If there exists non-function 𝜅̃,
s.t., 𝜌 ⊢

𝑑
𝑒 : 𝜅̃ w.r.t. S then S-NI(𝑒)

𝜌,𝑑
.

Lemma 4.2 (Connecting P-NI and S-NI). Expression 𝑒 has P-
noninterference, i.e., P-NI(𝑒)𝜌,𝑝 holds if S-NI(𝑒)

𝜌,𝑑
holds, where

𝔗 (−) translates P-NI entities to S-NI entities.

The set of encryption schemes S and set of security levels L are
exactly the same for P-NI as for S-NI , but TEEs and providers are
represented as S-NI domains D = T⊥ × P. An overloaded 𝔗 (−)
function translates P-NI entities to S-NI ones. The first step is
the query translation: 𝔗p (𝑒) takes a P-NI query 𝑒 (see Fig. 5) and
the initial domain 𝑝 producing a corresponding S-NI expression

6

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

(see [71, Fig. 4]). The construction is defined via a “thunked” version
𝔗′
p (𝑒), i.e., 𝔗p (𝑒) = 𝔗′

p (𝑒) (), which is mostly standard except for
the following:

𝔗′
p (table(𝑛𝑎𝑚𝑒)) = 𝜆[(𝜌𝑝 (𝑛𝑎𝑚𝑒),⊥)] . table(𝑛𝑎𝑚𝑒)

𝔗′
p (𝜃𝑝′,𝑡 (𝑒)) = 𝜆[(𝑝′,⊥)] . (𝜆[(𝑝′, 𝑡)] . 𝜃 (𝔗 (𝑒))) ()

Using 𝔗 (𝑒) we define the evaluation relation 𝑒 ⇓db 𝑣 for any non-
function 𝑣 as 𝔗 (𝑒) →∗

db 𝑣 . The validity of the definition comes
from two facts: (1) the set of non-function values, including rela-
tions inside db, is the same for P-NI and S-NI ; (2) Thm. 4.1 only
applies to non-function types. Due to the latter, we directly trans-
fer db1 ∼𝑙𝜌 db2 from S-NI [71, Fig. 9] to P-NI. For 𝑣1 ∼𝑝,𝑙 𝑣2 we
take the definition of the corresponding output relation from S-
NI [71, Fig.9], denoted here as 𝑣1 ≈𝑑,𝑙 𝑣2 and replace the premise of
EquivConstout with (𝑝, 𝑠) ∈ P(𝑙).

Finally, we describe the check that P-NI uses on its queries that
ultimately relies on 𝔗 (𝑒) and on mapping P-NI’s security policy
P into S-NI ’s policy S = 𝔗 (P). Concretely, 𝔗 (P) performs the
following transformation for each 𝑙 ∈ L: 𝔗 ((𝑑,⊥)) = ((⊥, 𝑝),⊥),
𝔗 ((𝑑, 𝑠)) = ((⊥, 𝑝), 𝑠) for 𝑠 ∈ S, and 𝔗 ((𝑑, 𝑡)) = ((𝑡, 𝑝), 𝑠) for
𝑡 ∈ T . Now, we show that the Scylla check in P-NI is S-NI ’s type
check, i.e. we prove that:

Theorem 4.3. If there exists non-function 𝜅̃ , s.t., 𝜌 ⊢(𝑝,⊥) 𝔗p (𝑒) :
𝜅̃ w.r.t. 𝔗 (P) then P-NI(𝑒)𝜌,𝑝 .

Proof. The first step is applying Thm. 4.1 in order to infer
S-NI(𝔗p (𝑒))𝜌,𝑑 . Then we use Lem. 4.2 to show P-NI(𝑒)𝜌,𝑝 holds.
By unrolling the definitions of P-NI and S-NI we infer that for
respective results 𝑣1, 𝑣2 of P-NI we have 𝑣1 ≈(𝑝,⊥),𝑙 𝑣2. The latter
can be seen to imply 𝑣1 ∼𝑝,𝑙 𝑣2 by definition of 𝔗 (P). □

5 CONFIGURATION LANGUAGE

This section presents theAPI allowing Scylla to support a variety of
mechanisms and security requirements at the query transformation
and optimization stage (Spark SQL part of Fig. 4). Details about
Spark SQL part, and aspects of execution like task scheduling and
distribution (Spark core part of Fig. 4), are discussed in § 6.

5.1 Defining Mechanisms and Providers

List. 2 shows Scylla’s API that defines the set of available providers
andmechanisms. For a Provider, only its identity (its name) is needed
for Spark’s query transformation, the identity is then automatically
linked with provider identity supplied to each ScyllaWorker and
then exposed to SCM (see § 6) within Spark core. List. 2 includes
Client and Inet, two built-in providers. Next, there are two kinds
of Mechanisms: TEEs and encryption Schemes. Scylla currently has
twomain interfaces for integrating TEEs, VirtualTEE and NativeTEE

respectively, representing the two TEE flavors (see § 3): VM-like
exemplified by Nitro and SEV, and enclave-like that are provided as
a library, main example being SGX. VirtualTEEs’ main characteris-
tic is that they can run full-fledged Spark workers, and hence can
benefit from the existing Spark infrastructure. Similar to providers,
VirtualTEE’s identity is what primarily matters for the query execu-
tion pipeline. A NativeTEE, on the other hand, requires implement-
ing query processing primitives using the TEE-specific API. To sim-
plify the implementation effort of adding new NativeTEEs, Scylla

includes TEE-independent support libraries covering most of the
query execution logic. Finally, Scheme represents a cryptographic
system (scheme) with the corresponding encrypt and decryptmeth-
ods. Schemes may optionally support PHE operations by extending
a respective PHEOp trait.

5.2 Heuristic-Based Mechanism Assignment

Based on the mechanisms and providers that are specified as per
§ 5.1 and confidentiality requirements captured by the security
policy P (see § 4.2), Scylla transforms queries so that it exploits the
specified mechanisms in the most efficient manner, while satisfying
confidentiality constraints. The assignment of mechanisms and
providers guides the whole process of query transformation. The
said assignment is the task of an optimization heuristic.

Heuristic API. To capture the optimization variables the heuristic
must find an assignment for (mechanisms and providers), Scylla
extends vanilla Spark query representation (LogicalPlan) with an-
notations presented in List. 3. There, Var[X] is a generic trait for
an optimization variable, which can either be Val(v), i.e. set to
some value v of type X, or Free, i.e., not yet set. ScyllaExprAnnot
captures that each Scylla expression has a security label and is
possibly encrypted with a scheme. Relational operators have nei-
ther their independent security label nor a single scheme, but are
always executed in some provider and possibly using a TEE, both
captured by ScyllaPlanAnnot. The annotations will be consumed by
Scylla’s further query transformation steps making direct use of
the mechanism implementations (§ 5.1). The heuristic, represented
by the Heuristic interface in List. 4, transforms a ScyllaPlan with
all Vars being Free into a fully annotated ScyllaPlan with no Free

choices left. Prior to execution, ScyllaPlan is always checked for
security constraints using the type system as in Hydra [71], hence
no heuristic can lead to violation of security guarantees.
The Heuristic interface captures the most general kind of mech-
anism assignment. It gives a lot of implementation freedom (e.g.,

1 trait Provider {val name: String}
2 object Inet extends Provider {... = "Inet"}
3 object Client extends Provider {... = "Client"}
4 sealed trait Mechanism {val name: String}
5 sealed trait TEE extends Mechanism
6 trait NativeTEE extends TEE
7 def initialize (...)
8 def setKeyInTEE (...)
9 def changeEncryptionScheme (...)
10 def project (...)
11 ...
12 trait VirtualTEE extends TEE
13 trait Scheme extends Mechanism
14 def encrypt(input: Long): Bytes
15 def decrypt(input: Bytes): Long
16 sealed trait PHEOp
17 trait AddPHEOp extends PHEOp
18 def add(x: Bytes , y: Bytes): Bytes
19 trait AddPtxtPHEOp extends PHEOp
20 def addPtxt(x: Bytes , y: Long): Bytes

Listing 2: Core API for Scylla’s execution capabilities.

7

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

even invoking an external optimization tool), but at the same re-
quires substantial implementation effort and provides little help
with ensuring that query semantics is preserved. Hence, Scylla also
provides several simpler building blocks based on ScyllaRule and
ScyllaStep interfaces inspired by Spark SQL’s Catalyst. ScyllaRule
is essentially Heuristic with a different contract: both input and
output can have some but not necessarily all mechanisms assigned.
ScyllaStep represents local and conditional (i.e., partial) modifi-
cations of a ScyllaPlan. ScyllaRule augments a traversal feature
to a ScyllaStep (e.g., .traverseUp to traverse a ScyllaPlan tree).
RuleHeuristic keeps applying the sequence of ScyllaRules to the
ScyllaPlan until the fixed point is reached. In addition to normal tra-
versals, ScyllaPlan provides equivalence-checking traversals with
an Eq suffix (e.g., .traverseUpEq), which internally wraps every
ScyllaStep into an EqScyllaStep. The latter additionally ensures
that the transformation preserves semantics following the transfor-
mation relation{ introduced in S-NI [71, Fig. 7].

Heuristic Examples. List. 5 shows heuristics from Hydra [71]
and List. 6 shows a novel heuristic of Scylla; both are expressed
using Scylla’s API and DSL. The API uses Scala’s standard li-
brary facility andThen to compose ScyllaSteps together. Individual
ScyllaSteps can be trivially lifted from predicates and total func-
tions via check(..) and rule(..), respectively. To select minimum
cost ScyllaStep, we use minCost(..). The cost is computed from ex-
ecution times of encryption schemes and operators in microbench-
marks (see § 2). Finally, Scylla provides setSchemesMinCost(), which
assigns schemes used by expressions within a given query operator

1 trait ScyllaExprAnnot
2 val label: Label
3 val scheme: Var[Option[Scheme]]
4 trait ScyllaPlanAnnot
5 val provider: Var[Provider]
6 val tee: Var[Option[TEE]]
7 class ScyllaPlan extends LogicalPlan
8 with ScyllaPlanAnnot {...}
9 class ScyllaExpression extends Expression
10 with ScyllaExprAnnot {...}

Listing 3: Scylla’s annotations for Spark’s logical plan and

expressions thereof. Vars are to be filled in by the heuristic.

1 trait Heuristic
2 // p ≈ LogicalPlan: has only free vars
3 def apply(p: ScyllaPlan): ScyllaPlan
4 type ScyllaStep =
5 PartialFunction[ScyllaPlan , ScyllaPlan]
6 type ScyllaRule = ScyllaPlan => ScyllaPlan
7 class RuleHeuristic(rs: ScyllaRule *)
8 extends Heuristic {...}
9 trait EqScyllaStep extends ScyllaStep
10 def safeApply(p: ScyllaPlan): ScyllaPlan
11 override def isDefinedAt(p: ...): Boolean
12 final def apply(p: ScyllaPlan) =
13 {/* checks p{safeApply(p) [71, Fig.7]*/}

Listing 4: Scylla’s heuristic API and auxiliary structures.

to minimize the cost, and if no assignment satisfies P while only
using operations supported by Schemes, the ScyllaStep is undefined.

6 SCYLLA RUNTIME DESIGN

Scylla’s runtime introduces secure components that span over
Spark SQL’s query execution pipeline, Spark core and the Stan-
dalone cluster manager (see Fig. 2).

6.1 Scylla Catalyst Integration

Fig. 6 presents details of Scylla’s query transformation integrated
into Catalyst query optimizer. The transformation ranges over cus-
tom logical plan optimization rules applied to a Scylla logical
plan, specialized strategies for Scylla query planner to generate a
mechanism-aware Scylla physical plan, and custom query prepa-
ration rules applied to the physical plan to generate the final ex-
ecuted physical plan. Scylla leverages security-related metadata
and operations to augment existing entities of the query execution
pipeline to get to an annotated logical plan ScyllaPlan introduced
in § 5.2, and a similarly annotated physical plan ScyllaPlanExec.

1 cldR: ScyllaRule = _.transformUpEq(
2 check(_.provider.isFree
3 && _.children.all(_.provider == AWS)
4) andThen rule(_.setP(AWS).setT(None))
5 andThen setSchemesMinCost ()
6)
7 restSGXR: ScyllaRule = _.transformUpEq(
8 check(_.provider.isFree)
9 andThen rule(_.setP(AWS).setT(SGX))
10 andThen setSchemesMinCost ()
11)
12 restClientR: ScyllaRule = _.transformUpEq(
13 check(_.provider.isFree)
14 andThen rule(_.setP(Client).setT(None))
15 andThen setSchemesMinCost ()
16)
17 hydraSGX = RuleHeuristic(restSGXR)
18 hydraPHE = RuleHeuristic(cldR , restClientR)
19 hydraHybrid = RuleHeuristic(cldR , restSGXR)

Listing 5: Heuristics fromHydra [71] expressed conveniently

with ScyllaRules.

1 cldWithSGXR: ScyllaRule = _.transformUpEq(
2 check(!_.provider.isFree)
3 andThen minCostOf(
4 rule(_.setP(Azure).setT(None))
5 andThen setSchemesMinCost (),
6 rule(_.setP(Azure).setT(SGX))
7 andThen setSchemesMinCost ()
8)
9)
10 cldWithSGX = RuleHeuristic(cldWithSGXR)

Listing 6: Rule-based heuristic: compute in the cloud (Azure)

either directly via PHE or via SGX, in any order (cf. hydraHybrid
from List. 5).

8

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

In Fig. 6, a Heuristic chooses the mechanisms while optimizing
the expected performance of query execution. This results in an-
notations on ScyllaPlan that captures everything affecting secu-
rity properties. The next step introduces PHE expressions. Stan-
dard expressions for operations, such as Add and Multiply, having
scheme-annotated arguments are replaced with Scylla’s coun-
terparts PHEAdd and PHEMultiply. The latter delegate computation
to AddPHEOp and MultiplyPHEOp methods of the respective Schemes.
Scylla then validates the annotations using our type checking al-
gorithm based on Hydra [71] to ensure that there are no violations
as per security policy P and establish P-NI. Type checking also
validates that PHE operations requested by the query’s annotations
are implemented by the corresponding Schemes, e.g., if there is an
addition of two encrypted expressions, the corresponding Scheme

class implements PHEAdd. Only on successful validation, denoted by
green color in Fig. 6, transformation proceeds further.

Remaining query transformation steps inspect the security an-
notations and modify the query to actually use the mechanisms.
These steps only rely on the interfaces outlined in § 5.1 and do
not need be changed when extending Scylla with new mecha-
nisms or heuristics. Then, Scylla query planner transforms the
optimized secure logical plan ScyllaPlan (ScP) into a physical plan
ScyllaPlanExec (ScPP). In the process, annotated relational opera-
tors are replaced with Scylla’s generic relational operators, which ei-
ther target VM-like or enclave-like TEEs. In all cases, the introduced
operators keep Provider metadata, but they execute differently de-
pending on whether tee refers to NativeTEE or not (i.e., absent or
VirtualTEE). For a NativeTEE, the operator’s execute() method in-
vokes an appropriate function of NativeTEE trait (e.g., relational
projection would call project). Otherwise, the operator reuses the
existing Spark’s execute() and, if VirtualTEE annotation is present,
augments provider metadata with the identity of the TEE. Both
pieces of metadata are propagated to security mechanism-aware
RDDs, which later signal the scheduler in Spark core to place the
corresponding computation onto an appropriate executor.

The remaining two steps prepare the ScyllaPlanExec (ScPP) for
execution. First, secure exchange operators are introduced to ensure
that the stages of query execution belonging to different providers
and VirtualTEEs are represented as separate stages of computation
and, hence, can be scheduled at appropriate executors. Second,
encryption/decryption operators are inserted at appropriate places
to ensure that the data crossing provider boundaries is encrypted

ScOptimizer

ScQuery plannerScQuery preparation

ScP ScP

ScPPeScPP

mech. opt. PHE ex. validate

gen. ops.

Heuristic Schemes

• Schemes
• Security policy P
• Data labelling

Providers + TEEs

xchg. op.enc./dec. op.

Schemes

Logical

plan

Physical

plan

Figure 6: Steps of query transformation in Spark SQL.

according to the Inet provider and that the data entering (resp.
leaving) VirtualTEEs is decrypted (resp. encrypted).

6.2 Scylla Spark Core Integration

The executed physical plan (eScPP) is then handed over to the cus-
tomized Spark core for further processing. Tab. 1 shows components
of Spark core and standalone cluster manager that are modified,
extended, or replaced with custom mechanism-aware implemen-
tations. Scylla’s efficient design introduces minimal changes to
the existing Spark core. Spark context is switched out with a novel
Scylla context (SC) having custom components – Scylla DAG sched-
uler (SDS), Scylla task scheduler (STS), Scylla scheduler backend
(SSB), which respectively replace existing ones – DAG scheduler,
task scheduler, scheduler backend.

Query Execution. Scylla session (SS) is the entry point for pro-
gramming with the DataFrame API – the main abstraction of Spark
SQL for executing relational workloads. The SC object associated
with a SS is the heart of a Spark application. The driver creates and
uses SC to coordinate the running of the Spark application on the
cluster. SC communicates with the Scylla cluster manager (SCM),
prompting the latter to allocate executors to the application on the
nodes across the cluster. SCM is based on Spark’s standalone cluster
manager. Once executors are launched, application code is shipped
to them as defined by the JAR passed to SC. Finally, SC sends tasks
to the executors who run the tasks and return the results.

SDS is the high-level scheduling layer that implements stage-
oriented scheduling. It computes a DAG of mechanism-aware stages
for each submitted job, keeps track of which RDDs and stage out-
puts are materialized, and finds a minimal schedule to run the job.
It then submits stages as mechanism-aware task sets to an under-
lying STS implementation that runs them securely on the cluster.
Mechanism information is injected from the stage into the task
sets as they are being created. STS schedules tasks for the cluster
by acting through a scheduler backend which is implemented con-
cretely as Scylla coarsegrained scheduler backend (SCGSB). STS
receives sets of mechanism aware tasks submitted to them from
SDS for each stage, and is responsible for sending the tasks to the
cluster, running them, retrying if there are failures, and mitigating
stragglers. STS delegates the responsibility of launching tasks on
executors possessing the correct mechanism to the Scylla taskset
manager (STSM).

Task Scheduling, Distribution, Launching, Execution. SCGSB acts
as a bridge between the driver and the worker nodes. It receives

Table 1: Lines of code per Scylla component. Insertions(+),

deletions(-), modifications(!) are w.r.t. original Spark compo-

nents.

Scylla component LoC (+) (-) (!)
Cluster 724 173 68 161
Driver 2782 162 1048 302
Deployment 2110 110 269 175
Executor 218 11 50 74
Spark SQL 43 0 1074 13
Spark 256 11 50 74

9

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

resource offers from the worker nodes and coordinates task sched-
uling. SCGSB interacts with the SCM to request resources and
allocate tasks. It utilizes the resource management capabilities pro-
vided by the cluster manager to schedule tasks across the cluster.
SCGSB initiates the the process of generating resource offers based
on the available resources on worker nodes. It communicates the
resource offers from workers to the STS and receives the active
mechanism-aware task sets for tasks in order of priority. It then
allocates mechanism-aware tasks to worker nodes with appropri-
ate mechanism based on priority and resource availability. Inter-
nally, STS responds with the active mechanism-aware task sets by
virtue of the STSM, which, under the hood, ensures that a correct
mechanism-aware task is appropriately issued in response to an
offer of a single executor possessing a mechanism from the SCGSB.
This sort of directed scheduling w.r.t. mechanisms ensures that
tasks are scheduled by STS strictly as per security constraints and
only then SCGSB communicates the task descriptions to Scylla
coarsegrained executor backend (SCGEB) running on each execu-
tor. SCGEB receives the task descriptions and launches the tasks
on the executor. The invariant that all tasks (narrow transforma-
tions/operators) in one stage have the same mechanism is ensured.
At runtime, a special mechanism change operator (invisible to the
data analyst) introduces a new stage when a new mechanism (as
decided by the heuristic) is to be assigned to an operator.

Nitro Remote Communication. NEs are highly isolated, with no
durable storage, no network access, no interactive access, no meta-
data serivces/DNS/NTP. All communication between the NE and
the instance is via a bi-directional VM socket (vsock) which supports
local streaming (TCP-like) communication that can not be leaked,
spoofed, or intercepted. Hence, the only way to communicate with
a NE is using a vsock socket. This special type of communication
mechanism acts as an isolated communication channel between
the parent EC2 instance and NEs. Since a NE is not connected to
the outside world, we use TSI to enable communication channels
among Scylla application runtime components (custom Scylla work-
ers and Scylla executors) hosted in all NEs running on the cluster.
All communication is channeled through vsock using socat [67]
bridges between the entities within the pairs (parent host, vsock
device of NE) and (vsock device of parent VM, NE) as shown in the
left (white) and right (red) portions respectively of Fig. 7.

7 EVALUATION

With Scylla’s security guarantees (S) defined in § 4.2, and users
writing queries agnostically to security constraints (T), we evaluate
different facets of Scylla’s I and E empirically by addressing the
following research questions:
RQ1: How does Scylla perform w.r.t. to state-of-the-art systems?
RQ2: How independent is Scylla w.r.t. different mechanisms and

how do these fare w.r.t. each other?
RQ3: How substantial are the performance benefits of novel heuris-

tics?

Benchmarks. We focus on the industry-standard TPC-H bench-
mark [102], due to its wide application and use in systems we
compare against, and in many others (e.g., [88, 92, 104]). All re-
ported end-to-end execution times are averages of 5 runs, and all

overheads are computed using geometric mean. Execution times are
clocked from the point of query submission on encrypted data until
the point results are decrypted on the driver/client-side, and hence
do not include one-time costs for data preparation, infrastructure
setup, RA of enclaves, and provisioning cryptographic keys. Since
RA’s latency is low (∼hundreds of milliseconds), we do not consider
it in our query execution times.

Setup. We use two state-of-the-art systems, Opaque [120] and
Hydra [71], both Spark-based like Scylla, for comparative evalu-
ation. Opaque uses SGX for confidentiality and is at the center of
a commercial product [82]. Oblivious RAM (ORAM) [46], which is
optionally supported by Opaque with a set of oblivious operations
for preventing information leakage through access patterns, was
disabled for fair comparison. Hydra supports both SGX and PHE
and a limited combination of the two. Hydra has been shown to be
faster than PHE-only system Cuttlefish [93] when using the same
PHE schemes, and faster than both Cuttlefish and Opaque when
combining SGX and PHE. TPC-H [102] was used (as the only bench-
mark) to evaluate both Opaque SQL [105] and Hydra (including
w.r.t. Opaque).

We run experiments on TPC-H (scale factor 10 for plaintext) us-
ing software mechanisms (PHE) and hardware mechanisms (SGX,
SEV, TDX, Nitro), in two cloud environments as none provides
all the hardware mechanisms supported by Scylla. Our cluster
comprises of 5 VMs for the untrusted cloud and 1 VM for the
trusted driver/client-side. All VMs were running Ubuntu 22.04.3
LTS with Linux 6.5. From Amazon AWS, we use r5.4xlarge VMs
for all workloads. The VMs were appropriately enabled with AWS
Nitro (Nitro CLI v1.3, Docker v23.0) as required. From Azure we use
DC16ads_v5 VMs which use AMD’s 3𝑟𝑑 -generation EPYC proces-
sor to offer SEV-SNP, DC16es_v5 VMs powered by 4𝑡ℎ Intel Xeon
scalable processors providing Intel TDX, and DC16ds_v3 VMs pow-
ered by the latest 3𝑟𝑑 generation Intel Xeon scalable processors
running SGX SDK v2.21.

Security policy used (along the lines of List. 1) for evaluation
ensured that plaintext data was encrypted with same schemes as
done in Hydra and Opaque to keep comparisons fair in research

Scylla worker

E E E

socat

socat

socat

socat

vsock

DNS resolver

iptables

Remote host EC2 instance
Nitro enclaveHost

<ip:port>

<port>

<port>

... ...

<ip,port>

<host,port>

<l
oc
al
ho

st
,p
or
t>

Figure 7: Communication between Nitro enclave and remote

host is channeled through vsock using socat bridges on the

host and in the enclave. Sockets in the host and nitro enclave

are transparently bridged to AF_VSOCK socket (vsock) - the

special Linux socket for VM-host communication.

10

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Queries

100

101

102

103

T
im

e
(s

ec
on

ds
)

Plaintext HydraPHE ScyllaPHE OpaqueSGX HydraSGX ScyllaSGX

Figure 8: End to end execution times (log). ScyllaPHE, HydraPHE in AWS; OpaqueSGX, ScyllaSGX, HydraSGX in Azure (RQ1).

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Queries

100

101

102

103

T
im

e
(s

ec
on

ds
)

Plaintext ScyllaPHE ScyllaSEV ScyllaTDX ScyllaNitro ScyllaSGX

Figure 9: End to end execution times (log). ScyllaNitro, ScyllaPHE in AWS; ScyllaSGX, ScyllaSEV, ScyllaTDX in Azure (RQ2).

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Queries

100

101

102

T
im

e
(s

ec
on

ds
)

Plaintext ScyllaSGX+PHE* ScyllaSGX+PHE

Figure 10: End to end execution times (log). Scylla
SGX+PHE*

(old heuristic), and ScyllaSGX+PHE (new heuristic) in Azure (RQ3).

questions across all relevant (execution) modes. Data for modes
SGX+PHE and PHE was encrypted with same schemes respectively
as done in Hydra. Data for modes SGX, SEV, TDX, and Nitro, was
encrypted with AES-GCM [73] following what was done in Hydra
and Opaque for SGX mode. Our hybrid heuristics (in short, when
to favor PHE over TEEs) are guided by execution times overheads
of running SQL operators as per Fig. 1.

RQ1: Scylla, Opaque, and Hydra with Single Mechanisms (PHE,
SGX) on TPC-H. Fig. 8 compares Hydra, Scylla, and Opaque using
single mechanisms as supported respectively (with correspond-
ing heuristics for Hydra and Scylla). On average, ScyllaPHE is
1.02× faster than HydraPHE, and ScyllaSGX is 1.91× faster than
OpaqueSGX and HydraSGX is 1.19× faster than ScyllaSGX. Scylla
like Hydra uses custom serialization and different SGX libraries
w.r.t. Opaque (Intel SGX SDK as opposed to Open Enclave SDK).
Importantly, Scylla is at least as fast as Hydra for PHE mode and
faster than Opaque for SGX mode, confirming that its general ap-
proach (I) is competitive adding aminor overhead only occasionally
(e.g., w.r.t. HydraSGX).

RQ2: Scylla with Single Mechanisms (TEEs SGX, SEV, TDX, Nitro;
and PHE) on TPC-H. Fig. 9 compares the different TEEs, as well
as PHE, in Scylla. On average, ScyllaPHE is 5.61× faster than

ScyllaSGX, which is 2.37× faster than ScyllaSEV, which in turn is
1.15× and 1.07× faster than ScyllaNitro and ScyllaTDX respectively.
ScyllaTDX is 1.08× faster than ScyllaNitro. Modes SEV, TDX, and
Nitro are close in performance but slower than SGX mode due to
encryption/decryption of data exiting/entering the enclaves hap-
pening in JVM in the former three compared to native code in
SGX mode. Nitro’s remote communication overhead also makes it
slightly slower than SEV. The superior performance of PHE mode
is mostly due to direct computation on ciphertext without having
to decrypt→ compute→ encrypt the data as done in TEEs (cf. § 2).

RQ3: Scylla and Hydra with Multi-Mechanism Heuristics. The
novel heuristic dubbed SGX+PHE (aka cldWithSGX from List. 6
which selects the best out of PHE or SGX based on latencies in
Fig. 1) is compared with a simpler heuristic dubbed SGX+PHE* used
in Hydra (aka hydraHybrid from List. 5 which by default naively se-
lects PHE until forced to switch to SGX). Data encrypted with same
schemes was used for both modes SGX+PHE and SGX+PHE* to
ensure fairness. As shown in Fig. 10, on average, ScyllaSGX+PHE is
1.36× faster than ScyllaSGX+PHE*. This shows how small changes
in heuristics to choose the mechanism with lower execution la-
tency for each operator can have an impact on performance. Scylla
supports such changes easily by its ability to quickly devise new
heuristics like SGX+PHE using its APIs and DSL.

11

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

8 RELATEDWORK

Scylla builds on previous works connected to container security [8,
17, 18, 94, 119], flexible TEE architectures [14], access control mod-
els for map-reduce based systems [90, 107], Hadoop ecosystem [52,
53], big data [33, 35] and big data platforms such as Spark [106, 113,
114], and databases [24, 34]. Scylla currently focuses on automating
the use of TEEs (enclave-like NativeTEEs and CVMs/VirtualTEEs),
in the context of confidential computingwith a single-party address-
ing many existing use cases as opposed to approaches like secure
multi-party computing [26, 41, 121] which address challenges in
multi-party scenarios.

Secure Data Analytics and Data Processing. Several works focus
on securing databases, using different single mechanisms and un-
derlying database systems. Examples include CryptDB [86] (PHE,
MySQL), TrustedDB [15] (IBM4764 secure co-processor, MySQL),
Cipherbase [7] (FPGA-based trusted component, Microsoft SQL
Server), and Monomi [104] (PHE, Postgres). None of these allow
mechanisms to be easily changed, and none support scalable dis-
tributed processing required for big data analytics. Autocrypt [101]
similarly uses PHE for securing web servers.

Several works extend Spark with individual/fixed mechanisms.
Before Opaque extended Spark with SGX and ORAM, Seabed [85]
extended Spark with PHE including novel symmetric schemes. Sym-
metria [92] extended Spark with yet more efficient novel symmetric
PHE schemes. Cuttlefish [93] extended Spark with both PHE and
SGX, leveraging the latter only for re-encryption though. Like
Opaque, Flare [64] extends Spark for use with SGX, reducing TCB
and adding SGX-specific optimizations.

Scylla has a number of advantages over Hydra[71]. Scylla
presents a novel system along with a runtime architecture that
supports both VM-like (VirtualTEE) and enclave-like (NativeTEE)
TEEs, also being the first system (to the best of our knowledge) to
leverage Nitro at scale for confidential computing. Scylla provides
a more streamlined simplified security policy and model, w.r.t. Hy-
dra, which also allows Scylla to reason about initial and interim
(inter-node communication) encryption schemes for data, while
benefiting from the same rigorous guarantees. Scylla also presents
a novel API design e.g. including TEEs at different “levels”, and
demonstrates easy portability to CVMs, along with a DSL, and
flexible rich heuristics. Hydra focussed on the formal framework –
language, type system, evaluation semantics, query transformation,
and establishing a noninterference guarantee. Scylla allows mech-
anisms to be assigned more flexibly thus allowing more elaborate
heuristics leading to improved performance as demonstrated.

Access Control for Big Data. Many works provide access control
for big data processing, without strong (cryptographic) enforce-
ment, using software or hardware mechanisms to protect data
in use. Vigiles [107] enforces access control for all types of data
(e.g., structured, unstructured, semi-structured), in the map-reduce
model without requiring any modification to the source code of
map-reduce systems. Vigiles automatically rewrites the cloud’s
front-end API by augmenting them with reference monitors. Aira-
vat [90] integrates mandatory access control and differential privacy
(DP) [37] in map-reduce computations. GuardMR [106] adds access
control at the level of key-value pairs for map-reduce. HeABAC [52]

provides attribute-based access control for multi-tenant Hadoop de-
ployments. SparkXS [87] provides access control for streaming data
in Spark. SparkAC [113] augments Spark with purpose-aware access
control (PAAC) [32] using GuardSpark++ [114] in Spark Catalyst.
Access control model for Hadoop ecosystem (HeAC) [53] is a formal
authorization model proposed for Apache Sentry and Ranger to
authorize object accesses based on object attributes (tags) for vari-
ous systems with diverse objects. Also formal attribute-based access
control (ABAC)-based techniques like [52] have been proposed for
context-based access control in Hadoop ecosystem projects.

Mechanism-Independent Systems. Several works propose generic
extensions of TEEs. Like works strengthening individual TEEs,
these are complementary to Scylla. Enarx [39] is a CPU-architecture
and cloud provider neutral framework to simplify application de-
ployment transparently to a variety of TEEs in the cloud by using
WebAssembly (WASM) and a microkernel. Enarx is suitable for light-
weight workloads and would incur a high overhead for running
complex general-purpose confidential computing workloads with
Spark. Veracruz [110] is designed for multi-party collaborative com-
putation, and its reliance on WASM, similar to Enarx, likely makes
it more suitable for lightweight workloads. Unlike Scylla, Enarx
supports SGX and SEV; Veracruz supports SGX, SEV, and Trust-
Zone. Nimble [5] proposes rollback protection for confidential cloud
services which is TEE-independent but focuses on a very specific
guarantee – adding protection against rollback attacks [72] where
the adversary violates the integrity of a protected application state
by replaying old persistently stored data or by starting multiple ap-
plication instances. Cerberus [61], a formal approach for secure and
efficient enclave memory sharing, shows that memory sharing can
substantially improve performance, and provides formal guaran-
tees about security – establishing the secure remote execution (SRE)
property via automated formal verification. Cerberus proposes a
general formal enclave platform model with memory sharing that
weakens the disjoint memory assumption and captures a family
of enclave platforms. PoBF-compliant framework (PoCF) [28] is a
framework for confidential computing as a service (CCaaS), based
on the security objective of proof of being forgotten (PoBF), to verify
the behavior of in-TEE programs in order to prevent them from
unintentionally leaking sensitive data and residue threats. PoCF
consists of a verifier based on Rust’s type system and security fea-
tures to prove PoBF-compliance for the whole enclave program.
While PoCF is designed with a TEE-agnostic library, its CCaaS
prototypes/PoCF enclaves are currently implemented only for SGX
and SEV.

9 CONCLUSIONS

Weproposed amechanism-independent confidential analytics frame-
work Scylla with a novel general architecture, implemented by
extending Spark, that can transparently utilize an extensible set
of software mechanisms and hardware mechanisms (both VM-like
and enclave-like). Scylla’s formal underpinnings ensure a novel
security property based on noninterference. Avenues for future
research include considering stronger adversaries, extending our
approach into streaming applications, distinguishing between dif-
ferent parties, and incorporating security notions like differential
privacy.

12

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

REFERENCES

[1] [n. d.]. Fortanix. https://www.fortanix.com.
[2] Adil Ahmad, Alex Schultz, Byoungyoung Lee, and Pedro Fonseca. 2023. An

Extensible Orchestration and Protection Framework for Confidential Cloud
Computing. In 17th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2023, Boston, MA, USA, July 10-12, 2023, Roxana Geambasu and
Ed Nightingale (Eds.). USENIX Association, 173–191. https://www.usenix.org/
conference/osdi23/presentation/ahmad

[3] AMD. 2020. AMD SEV-SNP. https://www.amd.com/content/dam/amd/en/
documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-
isolation-with-integrity-protection-and-more.pdf.

[4] AMD. 2021. AMD Secure Encrypted Virtualization. https://www.amd.com/en/
developer/sev.html.

[5] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Sri-
nath T. V. Setty, and Sudheesh Singanamalla. 2023. Nimble: Rollback Pro-
tection for Confidential Cloud Services. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2023, Boston, MA, USA, July
10-12, 2023, Roxana Geambasu and Ed Nightingale (Eds.). 193–208. https:
//www.usenix.org/conference/osdi23/presentation/angel

[6] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A
Shared Cache Attack That Works across Cores and Defies VM Sandboxing - and
Its Application to AES. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 591–604. https://doi.org/10.1109/SP.2015.42

[7] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,
Ravishankar Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal
Security with Cipherbase. http://www.cidrdb.org/cidr2013/Papers/CIDR13_
Paper33.pdf

[8] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark
Stillwell, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Piet-
zuch, and Christof Fetzer. 2016. SCONE: Secure Linux Containers with In-
tel SGX. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX
Association, 689–703. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/arnautov

[9] AWS. 2019. Security benefits of the Nitro architecture. https://www.youtube.
com/watch?v=0qcUOKupt7Y.

[10] AWS. 2020. Deep dive on AWS Nitro Enclaves for applications running on
Amazon EC2. https://www.youtube.com/watch?v=yDe_C_fpkfg.

[11] AWS. 2022. C5 Instances and the Evolution of Amazon EC2 Virtualization.
https://www.youtube.com/watch?v=LabltEXk0VQ.

[12] AWS. 2022. Powering Amazon EC2: Deep dive on the AWS Nitro System.
https://www.youtube.com/watch?v=jAaqfeyvvSE.

[13] AWS. 2024. The Security Design of the AWS Nitro System. https:
//docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-
nitro-system/security-design-of-aws-nitro-system.pdf.

[14] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, Michael D. Bailey and
Rachel Greenstadt (Eds.). 1073–1090. https://www.usenix.org/conference/
usenixsecurity21/presentation/bahmani

[15] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: A Trusted Hardware Based
Database with Privacy and Data Confidentiality. 205–216. http://doi.acm.org/
10.1145/1989323.1989346

[16] Jeff Barr. 2018. AWS News Blog. Amazon EC2 Update – Addi-
tional Instance Types, Nitro System, and CPU Options. https:
//aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-
types-nitro-system-and-cpu-options/.

[17] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2014. Shielding Appli-
cations from an Untrusted Cloud with Haven. 267–283. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/baumann

[18] Ferdinand Brasser, Patrick Jauernig, Frederik Pustelnik, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. 2022. Trusted Container Extensions for Container-based
Confidential Computing. CoRR abs/2205.05747 (2022). https://doi.org/10.48550/
arXiv.2205.05747 arXiv:2205.05747

[19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter
Felt (Eds.). 991–1008. https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck

[20] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution throughMicroarchitectural Load Value
Injection. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,

CA, USA, May 18-21, 2020. 54–72. https://doi.org/10.1109/SP40000.2020.00089
[21] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical

Attack Framework for Precise Enclave Execution Control. In Proceedings of the
2nd Workshop on System Software for Trusted Execution, SysTEX@SOSP 2017,
Shanghai, China, October 28, 2017. 4:1–4:6. https://doi.org/10.1145/3152701.
3152706

[22] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). 178–195.
https://doi.org/10.1145/3243734.3243822

[23] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page
Table-Based Attacks on Enclaved Execution. In 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
1041–1056. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/van-bulck

[24] Ji-Won Byun and Ninghui Li. 2008. Purpose based access control for privacy
protection in relational database systems. VLDB J. (2008), 603–619. https:
//doi.org/10.1007/s00778-006-0023-0

[25] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). 769–784.
https://doi.org/10.1145/3319535.3363219

[26] Edward Chen, Jinhao Zhu, Alex Ozdemir, Riad S. Wahby, Fraser Brown, and
Wenting Zheng. 2023. Silph: A Framework for Scalable and Accurate Generation
of Hybrid MPC Protocols. In 44th IEEE Symposium on Security and Privacy, SP
2023, San Francisco, CA, USA, May 21-25, 2023. IEEE, 848–863. https://doi.org/
10.1109/SP46215.2023.10179397

[27] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten-Hwang Lai. 2020. SgxPectre: Stealing Intel Secrets From SGX Enclaves via
Speculative Execution. IEEE Secur. Priv. (2020), 28–37. https://doi.org/10.1109/
MSEC.2019.2963021

[28] Hongbo Chen, HaobinHiroki Chen,Mingshen Sun, Kang Li, Zhaofeng Chen, and
XiaoFeng Wang. 2023. A Verified Confidential Computing as a Service Frame-
work for Privacy Preservation. In 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and
Carmela Troncoso (Eds.). 4733–4750. https://www.usenix.org/conference/
usenixsecurity23/presentation/chen-hongbo

[29] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David F. Os-
wald, and Flavio D. Garcia. 2021. VoltPillager: Hardware-based fault injec-
tion attacks against Intel SGX Enclaves using the SVID voltage scaling in-
terface. In 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, Michael D. Bailey and Rachel Greenstadt (Eds.). 699–716. https:
//www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai

[30] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. 2020. TFHE: Fast Fully
Homomorphic Encryption Over the Torus. Journal of Cryptology 33 (2020),
34–91.

[31] Pavel Chuprikov, Patrick Eugster, and Shamiek Mangipudi. 2025. Security Policy
as Code. IEEE Secur. Priv. 23, 2 (2025), 23–31. https://doi.org/10.1109/MSEC.
2025.3535803

[32] Pietro Colombo and Elena Ferrari. 2015. Privacy Aware Access Control for Big
Data. Big Data Res. 2, 4 (dec 2015), 145–154.

[33] Pietro Colombo and Elena Ferrari. 2015. Privacy Aware Access Control for Big
Data: A Research Roadmap. Big Data Res. (2015), 145–154. https://doi.org/10.
1016/j.bdr.2015.08.001

[34] Pietro Colombo and Elena Ferrari. 2017. Enhancing MongoDB with Purpose-
Based Access Control. IEEE Trans. Dependable Secur. Comput. (2017), 591–604.
https://doi.org/10.1109/TDSC.2015.2497680

[35] Pietro Colombo and Elena Ferrari. 2018. Access Control in the Era of Big Data:
State of the Art and Research Directions. In Proceedings of the 23nd ACM on Sym-
posium on Access Control Models and Technologies, SACMAT 2018, Indianapolis,
IN, USA, June 13-15, 2018, Elisa Bertino, Dan Lin, and Jorge Lobo (Eds.). 185–192.
https://doi.org/10.1145/3205977.3205998

[36] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. CacheQuote: Efficiently
Recovering Long-term Secrets of SGX EPID via Cache Attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2018), 171–191. https://doi.org/10.13154/TCHES.
V2018.I2.171-191

[37] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2016.
Calibrating Noise to Sensitivity in Private Data Analysis. J. Priv. Confidentiality
7, 3 (2016), 17–51. https://doi.org/10.29012/JPC.V7I3.405

[38] T. ElGamal. 1985. A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. Trans. on Information Theory 31, 4 (1985), 469–472.

13

https://www.fortanix.com
https://www.usenix.org/conference/osdi23/presentation/ahmad
https://www.usenix.org/conference/osdi23/presentation/ahmad
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.usenix.org/conference/osdi23/presentation/angel
https://www.usenix.org/conference/osdi23/presentation/angel
https://doi.org/10.1109/SP.2015.42
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper33.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper33.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.youtube.com/watch?v=0qcUOKupt7Y
https://www.youtube.com/watch?v=0qcUOKupt7Y
https://www.youtube.com/watch?v=yDe_C_fpkfg
https://www.youtube.com/watch?v=LabltEXk0VQ
https://www.youtube.com/watch?v=jAaqfeyvvSE
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
http://doi.acm.org/10.1145/1989323.1989346
http://doi.acm.org/10.1145/1989323.1989346
https://aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-types-nitro-system-and-cpu-options/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-types-nitro-system-and-cpu-options/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-types-nitro-system-and-cpu-options/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://doi.org/10.48550/arXiv.2205.05747
https://doi.org/10.48550/arXiv.2205.05747
https://arxiv.org/abs/2205.05747
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3243734.3243822
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://doi.org/10.1007/s00778-006-0023-0
https://doi.org/10.1007/s00778-006-0023-0
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1109/SP46215.2023.10179397
https://doi.org/10.1109/SP46215.2023.10179397
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-hongbo
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-hongbo
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://doi.org/10.1109/MSEC.2025.3535803
https://doi.org/10.1109/MSEC.2025.3535803
https://doi.org/10.1016/j.bdr.2015.08.001
https://doi.org/10.1016/j.bdr.2015.08.001
https://doi.org/10.1109/TDSC.2015.2497680
https://doi.org/10.1145/3205977.3205998
https://doi.org/10.13154/TCHES.V2018.I2.171-191
https://doi.org/10.13154/TCHES.V2018.I2.171-191
https://doi.org/10.29012/JPC.V7I3.405

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

[39] Enarx Project. Confidential Computing Consortium. Linux Foundation. 2023.
Enarx: Confidential Computing with WebAssembly. https://enarx.dev/.

[40] M. Falkner and J. Apostolopoulos. 2022. Intent-based Networking for the Enter-
prise: A Modern Network Architecture. Commun. ACM 65, 11 (2022), 108–117.

[41] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and
Raluca Ada Popa. 2022. CostCO: An automatic cost modeling framework for
secure multi-party computation. In 7th IEEE European Symposium on Security
and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. IEEE, 140–153. https:
//doi.org/10.1109/EUROSP53844.2022.00017

[42] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing
(STOC ’09). ACM, New York, NY, USA, 169–178. https://doi.org/10.1145/1536414.
1536440

[43] Craig Gentry and Shai Halevi. 2011. Implementing Gentry’s Fully-homomorphic
Encryption Scheme. In Proceedings of the 30th Annual International Conference
on Theory and Applications of Cryptographic Techniques: Advances in Cryptology
(EUROCRYPT’11). Springer-Verlag, Berlin, Heidelberg, 129–148. http://dl.acm.
org/citation.cfm?id=2008684.2008697

[44] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation
of the AES Circuit. IACR Cryptol. ePrint Arch. (2012), 99. http://eprint.iacr.org/
2012/099

[45] Joseph A Goguen and José Meseguer. 1982. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy. IEEE, 11–20.

[46] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation
by Oblivious RAMs. In ACM Symposium on Theory of Computing (STOC ’87).
182–194. https://doi.org/10.1145/28395.28416

[47] Christian Göttel, Rafael Pires, Isabelly Rocha, Sébastien Vaucher, Pascal Felber,
Marcelo Pasin, and Valerio Schiavoni. 2018. Security, Performance and Energy
Trade-Offs of Hardware-Assisted Memory Protection Mechanisms. In 37th IEEE
Symposium on Reliable Distributed Systems, SRDS 2018, Salvador, Brazil, October
2-5, 2018. IEEE Computer Society, 133–142. https://doi.org/10.1109/SRDS.2018.
00024

[48] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). 955–972.

[49] Brendan Gregg. 2017. AWS EC2 Virtualization 2017: Introducing Nitro. https://
www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html.

[50] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings (Lecture Notes in Computer
Science), Juan Caballero, Urko Zurutuza, and Ricardo J. Rodríguez (Eds.). 279–299.
https://doi.org/10.1007/978-3-319-40667-1_14

[51] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,
2015, Jaeyeon Jung and Thorsten Holz (Eds.). 897–912. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/gruss

[52] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2018. An Attribute-Based
Access Control Model for Secure Big Data Processing in Hadoop Ecosystem.
In Proceedings of the Third ACM Workshop on Attribute-Based Access Control
(ABAC’18). New York, NY, USA, 13–24. https://doi.org/10.1145/3180457.3180463

[53] Maanak Gupta, Farhan Patwa, and Ravi S. Sandhu. 2017. Object-Tagged RBAC
Model for the Hadoop Ecosystem. In Data and Applications Security and Privacy
XXXI - 31st Annual IFIP WG 11.3 Conference, DBSec 2017, Philadelphia, PA, USA,
July 19-21, 2017, Proceedings (Lecture Notes in Computer Science), Giovanni
Livraga and Sencun Zhu (Eds.). 63–81. https://doi.org/10.1007/978-3-319-61176-
1_4

[54] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai,
and Mingshu Li. 2020. Bluethunder: A 2-level Directional Predictor Based Side-
Channel Attack against SGX. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2020),
321–347. https://doi.org/10.13154/TCHES.V2020.I1.321-347

[55] IBM. 2024. Cost of a Data Breach Report. https://wp.table.media/wp-content/
uploads/2024/07/30132828/Cost-of-a-Data-Breach-Report-2024.pdf.

[56] Intel. 2023. Intel TDX module 1.0 specification. https://cdrdv2.intel.com/v1/dl/
getContent/733568(2023).

[57] David Kaplan. 2017. Protecting VM Register State With SEV-ES.
https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf.

[58] Vladimir Kiriansky and Carl A.Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. CoRR abs/1807.03757 (2018). arXiv:1807.03757 http:
//arxiv.org/abs/1807.03757

[59] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. 1–19. https://doi.org/10.1109/SP.2019.00002

[60] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings (Lecture Notes in Computer Science), Neal Koblitz
(Ed.). 104–113. https://doi.org/10.1007/3-540-68697-5_9

[61] Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu, Pranav Gad-
damadugu, Anjo Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia,
and Krste Asanovic. 2022. Cerberus: A Formal Approach to Secure and Efficient
Enclave Memory Sharing. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi
(Eds.). 1871–1885. https://doi.org/10.1145/3548606.3560595

[62] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas
Ristenpart (Eds.). 557–574.

[63] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
1257–1272. https://www.usenix.org/conference/usenixsecurity19/presentation/
li-mengyuan

[64] Xiang Li, Fabing Li, and Mingyu Gao. 2023. FLARE: A Fast, Secure, and Memory-
Efficient Distributed Analytics Framework (Flavor: Systems). Proc. VLDB Endow.
16, 6 (2023), 1439–1452. https://doi.org/10.14778/3583140.3583158

[65] Joshua Lind, Christian Priebe, DivyaMuthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David M. Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter R. Pietzuch. 2017. Glamdring: Automatic
Application Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,
Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 285–298. https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/lind

[66] Linux. 2019. Linux vsock address family. https://manpages.ubuntu.com/
manpages/jammy/man7/vsock.7.html.

[67] Linux. 2021. Multipurpose relay (SOcket CAT). https://manpages.ubuntu.com/
manpages/jammy/man7/vsock.7.html.

[68] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 605–622.
https://doi.org/10.1109/SP.2015.43

[69] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2022. A Survey
of Microarchitectural Side-channel Vulnerabilities, Attacks, and Defenses in
Cryptography. ACM Comput. Surv. (2022), 122:1–122:37. https://doi.org/10.
1145/3456629

[70] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis
attacks - revealing the secrets of smart cards. Springer.

[71] Shamiek Mangipudi, Pavel Chuprikov, Patrick Eugster, Malte Viering, and Sav-
vas Savvides. 2023. Generalized Policy-Based Noninterference for Efficient
Confidentiality-Preservation. Proc. ACM Program. Lang., Article 117 (2023),
25 pages. https://doi.org/10.1145/3591231

[72] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David M. Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Risten-
part (Eds.). 1289–1306. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/matetic

[73] David A. McGrew and John Viega. 2004. The Security and Performance of
the Galois/Counter Mode (GCM) of Operation. In Progress in Cryptology - IN-
DOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai,
India, December 20-22, 2004, Proceedings (Lecture Notes in Computer Science),
Anne Canteaut and Kapalee Viswanathan (Eds.), Vol. 3348. Springer, 343–355.
https://doi.org/10.1007/978-3-540-30556-9_27

[74] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Re-
bekah Leslie-Hurd, and Carlos V. Rozas. 2016. Intel® Software Guard Extensions
(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave.
In Proceedings of the Hardware and Architectural Support for Security and Pri-
vacy 2016, HASP@ICSA 2016, Seoul, Republic of Korea, June 18, 2016. 10:1–10:9.
https://doi.org/10.1145/2948618.2954331

[75] Masanori Misono, Dimitrios Stavrakakis, Nuno Santos, and Pramod Bhatotia.
2024. Confidential VMs Explained: An Empirical Analysis of AMD SEV-SNP
and Intel TDX. Proc. ACM Meas. Anal. Comput. Syst. 8, 3 (2024), 36:1–36:42.
https://doi.org/10.1145/3700418

[76] SaeidMofrad, Fengwei Zhang, Shiyong Lu, andWeidong Shi. 2018. A comparison
study of intel SGX and AMD memory encryption technology. In Proceedings
of the 7th International Workshop on Hardware and Architectural Support for
Security and Privacy, HASP@ISCA 2018, Los Angeles, CA, USA, June 02-02, 2018,
Jakub Szefer, Weidong Shi, and Ruby B. Lee (Eds.). ACM, 9:1–9:8. https://doi.

14

https://enarx.dev/
https://doi.org/10.1109/EUROSP53844.2022.00017
https://doi.org/10.1109/EUROSP53844.2022.00017
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://dl.acm.org/citation.cfm?id=2008684.2008697
http://dl.acm.org/citation.cfm?id=2008684.2008697
http://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/099
https://doi.org/10.1145/28395.28416
https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1109/SRDS.2018.00024
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1145/3180457.3180463
https://doi.org/10.1007/978-3-319-61176-1_4
https://doi.org/10.1007/978-3-319-61176-1_4
https://doi.org/10.13154/TCHES.V2020.I1.321-347
https://wp.table.media/wp-content/uploads/2024/07/30132828/Cost-of-a-Data-Breach-Report-2024.pdf
https://wp.table.media/wp-content/uploads/2024/07/30132828/Cost-of-a-Data-Breach-Report-2024.pdf
https://cdrdv2.intel.com/v1/dl/getContent/733568 (2023)
https://cdrdv2.intel.com/v1/dl/getContent/733568 (2023)
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1145/3548606.3560595
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://doi.org/10.14778/3583140.3583158
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://manpages.ubuntu.com/manpages/jammy/man7/vsock.7.html
https://manpages.ubuntu.com/manpages/jammy/man7/vsock.7.html
https://manpages.ubuntu.com/manpages/jammy/man7/vsock.7.html
https://manpages.ubuntu.com/manpages/jammy/man7/vsock.7.html
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3591231
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/3700418
https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1145/3214292.3214301

Confidential Analytics with Scylla SoCC ’25, November 19–21, 2025, Online,

org/10.1145/3214292.3214301
[77] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGXAmplifies the Power of Cache Attacks. In Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings (Lecture Notes in Computer Science), Wieland
Fischer and Naofumi Homma (Eds.). 69–90. https://doi.org/10.1007/978-3-319-
66787-4_4

[78] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. 2012. GUPT: Privacy
Preserving Data Analysis Made Easy. In ACM SIGMOD International Conference
on Management of Data (SIGMOD’12). 349–360.

[79] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018.
SEVered: Subverting AMD’s Virtual Machine Encryption. In Proceedings of
the 11th European Workshop on Systems Security, EuroSec@EuroSys 2018, Porto,
Portugal, April 23, 2018, Angelos Stavrou and Konrad Rieck (Eds.). 1:1–1:6. https:
//doi.org/10.1145/3193111.3193112

[80] K. Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age (2
ed.). O’Reilly.

[81] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020. 1466–1482. https://doi.org/10.1109/
SP40000.2020.00057

[82] OPAQUE. 2023. OPAQUE. The Confidential AI Company. https://www.opaque.
co/.

[83] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and
Countermeasures: The Case of AES. 3860 (2006), 1–20. https://doi.org/10.1007/
11605805_1

[84] Pascal Paillier. 1999. Public-key Cryptosystems Based on Composite De-
gree Residuosity Classes. 223–238. http://dl.acm.org/citation.cfm?id=1756123.
1756146

[85] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.
In 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Tim-
othy Roscoe (Eds.). USENIX Association, 587–602. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/papadimitriou

[86] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. 2012. CryptDB: Processing Queries on an Encrypted Database. Commun.
ACM 55, 9 (Sept. 2012), 103–111. https://doi.org/10.1145/2330667.2330691

[87] Davy Preuveneers and Wouter Joosen. 2015. SparkXS: Efficient Access Control
for Intelligent and Large-Scale Streaming Data Applications. In 2015 Interna-
tional Conference on Intelligent Environments. 96–103.

[88] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof Fetzer. 2019. SGX-
PySpark: Secure Distributed Data Analytics. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White,
Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and
Leila Zia (Eds.). ACM, 3564–3563. https://doi.org/10.1145/3308558.3314129

[89] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. 1978. On data banks
and privacy homomorphisms. Foundations of secure computation (1978).

[90] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett
Witchel. 2010. Airavat: Security and Privacy for MapReduce. In Proceedings of
the 7th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2010, April 28-30, 2010, San Jose, CA, USA. USENIX Association, 297–312.
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf

[91] B. Sang, P.-L. Roman, P. Eugster, H. Lu, S. Ravi, and G. Petri. 2020. PLASMA:
Programmable Elasticity for Stateful Cloud Computing Applications. Vol. 42. 1–15
pages.

[92] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Effi-
cient Confidentiality-Preserving Data Analytics over Symmetrically Encrypted
Datasets. Proc. VLDB Endow. 13, 8 (2020), 1290–1303. https://doi.org/10.14778/
3389133.3389144

[93] Savvas Savvides, Julian James Stephen, Masoud Saeida Ardekani, Vinaitheerthan
Sundaram, and Patrick Eugster. 2017. Secure Data Types: A Simple Abstraction
for Confidentiality-preserving Data Analytics (SoCC ’17). ACM, New York, NY,
USA, 479–492. https://doi.org/10.1145/3127479.3129256

[94] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 38–54.

[95] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). 753–768. https://doi.org/10.1145/3319535.3354252

[96] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking

Inside a Single Enclave of Intel SGX. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’20). 955–970. https:
//doi.org/10.1145/3373376.3378469

[97] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017.
Panoply: Low-TCB Linux Applications With SGX Enclaves. In 24th An-
nual Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
panoply-low-tcb-linux-applications-sgx-enclaves/

[98] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vin-
nie Scarlata. 2021. Supporting intel sgx on multi-socket platforms.
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf.

[99] Jakub Szefer. 2019. Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses. J. Hardw. Syst. Secur. (2019), 219–234. https://doi.org/10.
1007/S41635-018-0046-1

[100] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, Engin Kirda and Thomas Ristenpart (Eds.). 1057–1074. https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

[101] Shruti Tople, Shweta Shinde, Zhaofeng Chen, and Prateek Saxena. 2013. AU-
TOCRYPT: enabling homomorphic computation on servers to protect sensi-
tive web content. In 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’13, Berlin, Germany, November 4-8, 2013. 1297–1310.
https://doi.org/10.1145/2508859.2516666

[102] TPC. 1988. TPC-H benchmark. http://www.tpc.org/tpch/.
[103] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In USENIX Annual Technical
Conference (ATC ’17). 645–658.

[104] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.
Processing Analytical Queries over Encrypted Data. 6, 5 (2013), 289–300. http:
//www.vldb.org/pvldb/vol6/p289-tu.pdf

[105] UC Berkley RISE Lab. 2021. MC2. https://mc2-project.github.io/opaque-sql-
docs/src/benchmarking/benchmarking.html.

[106] Huseyin Ulusoy, Pietro Colombo, Elena Ferrari, Murat Kantarcioglu, and Er-
man Pattuk. 2015. GuardMR: Fine-grained Security Policy Enforcement for
MapReduce Systems. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17,
2015, Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn (Eds.). 285–296.
https://doi.org/10.1145/2714576.2714624

[107] Huseyin Ulusoy, Murat Kantarcioglu, Erman Pattuk, and Kevin W. Hamlen.
2014. Vigiles: Fine-Grained Access Control for MapReduce Systems. In 2014
IEEE International Congress on Big Data, Anchorage, AK, USA, June 27 - July 2,
2014. 40–47. https://doi.org/10.1109/BIGDATA.CONGRESS.2014.16

[108] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019. 88–105. https://doi.org/10.1109/
SP.2019.00087

[109] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, D. Genkin, A. Miller,
E. Ronen, Y. Yarom, and C. Garman. 2024. SoK: SGX.Fail: How Stuff Gets
eXposed. In 2024 IEEE Symposium on Security and Privacy (SP). 248–248. https:
//doi.org/10.1109/SP54263.2024.00260

[110] Veracruz Contributors. 2024. Veracruz: Confidential Collaborative Computation.
https://veracruz.readthedocs.io/en/latest/.

[111] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. 2016. Intel® Soft-
ware Guard Extensions (Intel® SGX) Software Support for Dynamic Memory
Allocation inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, HASP@ICSA 2016, Seoul, Republic of Korea,
June 18, 2016. 11:1–11:9. https://doi.org/10.1145/2948618.2954330

[112] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 640–656. https://doi.org/10.1109/SP.2015.45

[113] Tao Xue, Yu Wen, Bo Luo, Gang Li, Yingjiu Li, Boyang Zhang, Yang Zheng,
Yanfei Hu, and Dan Meng. 2023. SparkAC: Fine-Grained Access Control in
Spark for Secure Data Sharing and Analytics. IEEE Trans. Dependable Secur.
Comput. 20, 2 (2023), 1104–1123. https://doi.org/10.1109/TDSC.2022.3149544

[114] Tao Xue, Yu Wen, Bo Luo, Boyang Zhang, Yang Zheng, Yanfei Hu, Yingjiu Li,
Gang Li, and Dan Meng. 2020. GuardSpark++: Fine-Grained Purpose-Aware
Access Control for Secure Data Sharing and Analysis in Spark. In ACSAC ’20:
Annual Computer Security Applications Conference, Virtual Event / Austin, TX,
USA, 7-11 December, 2020. 582–596. https://doi.org/10.1145/3427228.3427640

[115] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX Se-
curity Symposium, San Diego, CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon
Jung (Eds.). 719–732. https://www.usenix.org/conference/usenixsecurity14/

15

https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://www.opaque.co/
https://www.opaque.co/
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://dl.acm.org/citation.cfm?id=1756123.1756146
http://dl.acm.org/citation.cfm?id=1756123.1756146
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/papadimitriou
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/papadimitriou
https://doi.org/10.1145/2330667.2330691
https://doi.org/10.1145/3308558.3314129
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.1145/3127479.3129256
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3373376.3378469
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/panoply-low-tcb-linux-applications-sgx-enclaves/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/panoply-low-tcb-linux-applications-sgx-enclaves/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://doi.org/10.1007/S41635-018-0046-1
https://doi.org/10.1007/S41635-018-0046-1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1145/2508859.2516666
http://www.tpc.org/tpch/
http://www.vldb.org/pvldb/vol6/p289-tu.pdf
http://www.vldb.org/pvldb/vol6/p289-tu.pdf
https://mc2-project.github.io/opaque-sql-docs/src/benchmarking/benchmarking.html
https://mc2-project.github.io/opaque-sql-docs/src/benchmarking/benchmarking.html
https://doi.org/10.1145/2714576.2714624
https://doi.org/10.1109/BIGDATA.CONGRESS.2014.16
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP54263.2024.00260
https://doi.org/10.1109/SP54263.2024.00260
https://veracruz.readthedocs.io/en/latest/
https://doi.org/10.1145/2948618.2954330
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/TDSC.2022.3149544
https://doi.org/10.1145/3427228.3427640
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

SoCC ’25, November 19–21, 2025, Online, Shamiek Mangipudi, Pavel Chuprikov, Gerald Prendi, and Patrick Eugster

technical-sessions/presentation/yarom
[116] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-
27, 2012, Steven D. Gribble and Dina Katabi (Eds.). USENIX Association, 15–
28. https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/
zaharia

[117] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou. 2018.
TruSense: Information Leakage from TrustZone. In 2018 IEEE Conference on
Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018.
1097–1105. https://doi.org/10.1109/INFOCOM.2018.8486293

[118] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou. 2018.
TruSense: Information Leakage from TrustZone. In 2018 IEEE Conference on
Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018.

1097–1105. https://doi.org/10.1109/INFOCOM.2018.8486293
[119] Xuyang Zhao, Mingyu Li, Erhu Feng, and Yubin Xia. 2022. Towards A Secure

Joint Cloud With Confidential Computing. In 2022 IEEE International Conference
on Joint Cloud Computing (JCC). 79–88. https://doi.org/10.1109/JCC56315.2022.
00019

[120] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 283–298. https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

[121] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda,
and Ion Stoica. 2021. Cerebro: A Platform for Multi-Party Cryptographic Col-
laborative Learning. In 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, Michael D. Bailey and Rachel Greenstadt (Eds.). USENIX
Association, 2723–2740. https://www.usenix.org/conference/usenixsecurity21/
presentation/zheng

16

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1109/INFOCOM.2018.8486293
https://doi.org/10.1109/INFOCOM.2018.8486293
https://doi.org/10.1109/JCC56315.2022.00019
https://doi.org/10.1109/JCC56315.2022.00019
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Architecture
	3.2 Workflow

	4 Security
	4.1 Threat Model
	4.2 Security Policy
	4.3 Secure Query Language
	4.4 Guarantees

	5 Configuration Language
	5.1 Defining Mechanisms and Providers
	5.2 Heuristic-Based Mechanism Assignment

	6 Scylla Runtime Design
	6.1 Scylla Catalyst Integration
	6.2 Scylla Spark Core Integration

	7 Evaluation
	8 Related Work
	9 Conclusions
	References

