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Abstract—Promptly reacting to failures is key for highly
available datacenter services. At the core, failure detectors (FDs)
have to rely on timeouts which are hard to set correctly on
top of heavily contended processors and network resources. To
overcome unpredictable interaction jitter, designers still have to
resort to large timeouts to preserve safety (i.e. false positives)
at the cost of availability. The shift toward hybrid architectures
– where applications span accelerators, disaggregated memory,
and network devices – exacerbates this issue. With common-case
latencies dropping to the µs-scale or lower, conservative timeouts
on top of best-effort software make FDs and coordination services
impractically slow and unreliable.

Motivated by the growing adoption of programmable network
devices (e.g. smartNICs, FPGA-switches), we propose a new
paradigm to tackle this issue by pushing self-contained, time-
sensitive services to hardware. We introduce the idea of modeling
a distributed system as a large digital circuit characterized by a
stable “clock signal” consisting of periodic packets delivered with
ultra-low reliable latency. We highlight how current datacenter
technologies can be used to enable synchronous interactions in
practice and discuss how a reliable FD trivially built on top can
be used to increase robustness and performance of both hardware
and software distributed applications.

I. INTRODUCTION AND MOTIVATION

A growing number of dependable applications run in dis-
tributed manner on custom off-the-shelf hardware hosted by
third-party datacenter infrastructures. To ensure high avail-
ability, these distributed services must promptly detect and
overcome failures typically achieved by the so-called process
failure detector (FD) abstraction. FDs can employ a variety of
detection techniques which, at their core, must rely on timeouts
to detect the unresponsiveness of a remote process.

Unfortunately, current protocols built on top of commodity
systems are subject to unpredictable processing and network
latency due to heavy resource contention, e.g. sudden CPU
utilization or traffic spikes. This gives rise to the enduring
challenge of coordinating distributed processes, requiring a
balance between consistency and performance. In most cases,
system designers prioritize the former and increase timeouts
to take into account worst-case interactions (communication
+ processing) times between processes in order to avoid false
positives which might compromise safety. This comes at the
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cost of liveness, i.e., when more than few isolated process
failures of processes without prompt removal or replacement,
widespread systems that depend on majority quorum voting
may stall, as the number of operational processes can fall
below the required quorum threshold. While some recent
systems still assume that large timeouts of multiple seconds
are tolerable and can go as far as notifying an operator [1], this
fallback mechanism is clearly unaffordable for core services
in which even a minor downtime can lead to significant
disruption [2], [3]. Such scenarios are particularly problematic
for emerging µs-scale coordination services [4] (e.g. high-
frequency trading), where the short lifespan of processes needs
to be combined with high availability.

The need for fast and reliable interactions to overcome
failures is further evidenced by the growing adoption of
accelerator-based systems for commodity datacenters [5].
These include numerous accelerators for specific workloads,
and programmable network devices (e.g. smart network inter-
face controllers (smartNICs), programmable switches). In gen-
eral, by significantly improving average performance, novel
datacenter technologies put additional pressure on typical FD
stacks using conservative timeouts, making them an unafford-
able bottleneck. To put the gap into perspective, assume a
replicated Apache Kafka [6] cluster using Waverunner [7],
a state-of-the-art field programmable gate array (FPGA)-
smartNICs accelerated state-machine replication (SMR) pro-
tocol, to safely replicate client requests at a high throughput.
Kafka’s default minimum timeout of 6s to detect a replica
failure could result in ∼150 million lost requests which need to
be re-transmitted by clients. While state-of-the-art FDs claim
that end-to-end timeouts can be safely lowered to the ms-range
(∼25000 lost requests in the previous example when using the
fastest FD known to us [8]), there is still a significant disparity
between common-case performance and responsiveness to
failures under heavy system load.

The lack of end-to-end, deployable solutions to achieve
reliable timeouts at the µs-scale especially affects the emerging
paradigm of disaggregated memory (DM) [9], [10], separating
applications across (a) compute nodes (CNs) with powerful
central processing units (CPUs) but relatively small (decreas-
ing [9]) amounts of memory and (b) memory nodes (MNs)
with more memory. This increases potential for partial failures,
as nodes in one tier can fail independently of counterparts in



the other [11]. Works in DM typically assume the process fail-
stop model [12] implying that failures are reliably detectable,
and reliable networks [11], [13], without specific system
support.

Motivated by the inherent limitations of the asynchronous
model for dependable systems, this work aims to open a
discussion on the following research question: (how) can we
establish stable and fast remote process interactions in modern
hybrid datacenters?

We begin by observing that distributed applications sitting
on top of commodity operating systems (OSs) are inevitably
affected by several jitter sources since packets need to tra-
verse the whole system stack, encountering contention on
multiple layers of the classical network hardware/software
stack [14]. While approaches to bypass some of the layers
exist, e.g. kernel-bypass frameworks such as remote direct
memory access (RDMA), it is still unclear to what extent
they can effectively reduce worst-case latency needed for
robust timeouts rather than optimizing for common-case (e.g.
high-throughput packet processing [15], [16]). Some software
approaches provide more comprehensive solutions for stable
processing [17], [18] but are based on complex OS fine-
tuning which is platform-specific and error-prone significantly
limiting portability.

On the other hand, advances in programmable network
devices not only allow for optimal offloading of small com-
puting routines but also ensure that network processing is
timely deterministic and precise. Specifically, devices such
as FPGA-equipped smartNICs and switches directly attached
to the wire have uninterrupted access to incoming packets
and can dedicate processing resources to specific high-priority
traffic preventing costly preemption. Motivated by the growing
availability of programmable network hardware and by the
establishment of reliable networking protocols, we propose
to model distributed systems in datacenters as large digital
circuits. The main characteristic of such model is the presence
of an ultra-stable “clock” constituted by periodic incoming
packets at every node. In the following sections we discuss
how a digital cluster circuit (DCC) is a practical instance
of the more generic synchronous model that can lead to
improvements to reliability and performance of coordination
primitives.

II. THE DIGITAL CLUSTER CIRCUIT MODEL

A. A practical instance of the synchronous model

The ability of using reliable timeouts is the core advantage
of synchronous system models over asynchronous ones. How-
ever, system designers commonly consider assuming upper
time bounded interactions to be undesirable because (1) it
is likely that jitter in processing or communication delays
would break bounds which are set too low and (2) setting
high bounds to encompass delays would lead to inefficiencies
as processes end up waiting longer than necessary, impacting
latency and availability. This led to the widespread adoption
of the asynchronous model where packets are assumed to
take an arbitrary time to travel between nodes. Asynchronous

protocols guarantee safety and are suitable for several use-
cases but present some fundamental impossibilities namely in
the presence of crash failures [19] as these cannot be detected
under asynchrony. In fact, asynchronous systems (including
FDs) overcome limitations by assuming synchrony only even-
tually and only for some properties, setting prohibitively large
timeouts on top of commodity systems without providing
any guarantees. The distributed systems community has long
regarded these costs as the unavoidable “price to pay”, justified
by the unreliability and poor performance of past networks and
endhost systems.

Advances in networking and computing technologies chal-
lenge this common belief, exemplified by the real-time and
cyber-physical systems communities which have been building
synchronous systems for decades. We believe this time has
come also for modern datacenters. In fact, recent work [20]
shares some of our observations about the overly conservative
asynchronous assumptions on modern systems, going as far
as proposing a design for a fully synchronous datacenter.
However, the current technological stack does not seem to be
suited to adopt synchrony at such scale in terms of efficiency,
due to the disruption to existing asynchronous services, and
reliability, due to the uncertainty of best-effort network and
processing layers (particularly software).

Instead, we propose an alternative: a novel system better
suited to the current technological ecosystem, leveraging pro-
grammable network hardware within a subset of the datacenter,
which we abstract as the digital cluster circuit (DCC). Our
system can be thought of as a practical instance of the
“timely computing base” proposed by seminal work [21]. In
their line of work, authors provide algorithmic foundations
to reason about a model which can rely on varying degrees
of timeliness provided by a specific subsystem, showcasing
how it can be used to build dependable and reliable appli-
cations. By grounding these theoretical concepts in concrete
implementations, DCC demonstrates its potential to enhance
system performance and reliability in real-world datacenter
environments. Through this practical adaptation, our initial
work aims to bridge the gap between theoretical hybrid timing
models and the operational demands of modern infrastructure.

B. System design

Figure 1 depicts a preliminary high-level design of a DCC.
Modules are replicated units inside programmable network
devices, which can be switches or smartNICs. Similarly to
a classical digital circuit, every module receives a periodic
clock signal which triggers a state transition based on custom
logic and application inputs. In our system, inputs can also
come from the rich clock (RCLK) signal, term which we use
to denote low-jitter periodic packets going into every node.
Modules contain a decoder module to parse the RCLK, infor-
mation which is fed into custom logic based on the application
(e.g. failure detection). The complexity of DCC’s custom logic
is limited by the processing capability and processing time
constraints of network devices, which need to be able to
operate at line speed. Nonetheless, DCC modules are well
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Fig. 1. Instance of the digital cluster circuit (DCC) model. Modules are
deployed on programmable network hardware (PNHW) devices and exchange
periodic rich clock (RCLK) packets. Interactions are logic dependent (e.g. FD)
and may be asymmetrical.

suited for distributed synchronous coordination protocols and
other short latency-centric tasks while applications can focus
on the heavy lifting computation. Note that the logic block
may vary between modules and may be replicated to handle
multiple RCLKs signals. The custom logic output goes into a
rate limiter: a fundamental module which controls the amount
of egress traffic to avoid network congestion. The limiter
follows a precise cluster schedule to ensure timely delivery
for RCLK packets. DCC interactions can be asymmetrical,
as shown in Figure 1 where the two switches aggregate
multiple RCLK signals. Modules are dynamically deployed
to programmable network devices following specific software
and/or hardware-offloaded application processes.

C. Synchronous interactions with modern network hardware

DCC relies on the timely delivery of RCLK packets which
needs to be ensured even upon heavy networking and pro-
cessing load to avoid breaking the model’s guarantees. Below
we summarize the key emerging factors that substantiate the
feasibility of our design:

• Single administrative domain. Datacenters have end-to-
end interactions under administrative control. This gives
operators and users have the ability of setting custom traf-
fic policies and resource reservation in selected clusters.

• Programmable network hardware. Commodity data-
centers are increasingly adopting hybrid workload-driven
architectures [22] Technologies such as FPGAs, smart-
NICs, allow to offload small processing routines directly
onto the wire, offering unprecedented programmability
and accuracy.

• Predictable processing times. With network becoming
increasingly faster, the overhead introduced by network
stacks is no longer negligible. While state-of-the-art
software processing pipelines on top of heavily multi-
tasked commodity OSs are still unpredictable and hard to
configure (e.g. RDMA [23]), programmable network de-
vices offer a more stable alternative. Thanks to physically

isolated processing units and the absence of software
layers below them, hardware-offloaded routines promise
to reduce jitter down a handful of clock cycles.

• Bounded network latency. Industrial network consor-
tiums are actively working towards network reliability
for time-sensitive traffic. Notably, IEEE time-sensitive
networking (TSN) [24] and the Deterministic Network-
ing IETF Task Force (DetNet) provide sets of standards
specifically for bounded low latency and strong reliability
in Ethernet and even wireless networks, with manufac-
turers providing growing support. These mechanisms,
already adopted in real-time and cyber-physical systems,
ensure that time-critical traffic meets hard deadlines,
proving promising for datacenter applications. Further-
more, some datacenter-specific systems already show how
to use software-defined networks (SDNs) which provide
separated control planes to dynamically reserve network
resources ensuring that packets never experience delay
even under heavy traffic and congestion, even claiming
bounded communication latency [17], [25], [26].

• Optimal traffic scheduling. TSN 802.1Qbv time-aware
shaping [27] provides a mechanism that schedules traffic
based on time using precision-time protocol (PTP) to
ensure ns-range clock synchronization among network
devices. These technologies also provide support to ef-
ficiently interleave time-sensitive and best-effort traffic,
standing out among others for their clear potential to offer
ultra-reliable rate limiting functionality to DCC modules
while maximizing network utilization. An alternative
(possibly to be used in combination) is the established
priority traffic shaping through the use of switch multi-
queues largely adopted by datacenter protocols.

• Easier network programming. Low-level data plane
and hardware development (e.g. P4 [28]) frameworks
for automatic hardware offloading [29], and platforms
designed for large-scale, streamlined programming and
deployment of network processing routines [30].

III. BUILDING DEPENDABLE APPLICATIONS WITH DCC

A. Reliable failure detection

The DCC can be used to build a typical heartbeat crash FD
by trivially considering the absence of a RCLK packet as a
failure indication. However, the presence of network failures,
i.e. switch or link faults, might harm the accuracy of the
failure detection. This is because in the occurrence of transient
or permanent network partitions, a network failure might be
falsely interpreted as failure of an end node by a subset of the
processes, leading to inconsistent detection across the cluster.
Below we propose methods to achieve reliability in DCCs by
explicitly addressing network failures.

• Exploiting redundancy. Over-provisioned datacenters
offer redundant physical connections among nodes (e.g.
variations of the typical fat-tree topology [31]). Moreover,
highly available core services are usually placed in a
way to guarantee performance in practice, increasing the



probability of having multiple alternative network paths
between distributed replicas or placing them close to each
other to make failures “atomic” (all/nothing). DCC could
leverage the physical redundancy by sending parallel
RCLK signals to reduce the probability of a false failure
suspicion at the cost of increased network utilization.

• Recovery networks. Seminal work on resilient datacen-
ter networks [31] proposes re-engineered fat-tree topolo-
gies and in-network failure detection to quickly overcome
failures by dynamic re-routing. By integrating similar
mechanisms within the stable communication protocols,
DCC can safely overcome some network failures at the
cost of slightly higher time bounds. This strategy can
be complemented with safety backstops when a critical
number of network failures is reached.

• Monitoring neighbors. Another option to avoid misinter-
pretation of network failures is to deploy DCCs so that
every node sends a RCLK signal only to its neighbors
(no multi-hop). The monitoring nodes take charge of
propagating the failure notification which is therefore un-
equivocally detected by the entire cluster. This approach
needs to carefully consider multiple network failures in
rapid succession.

Combination of these mechanisms and DCC stable inter-
actions offer concrete solutions to dramatically lower the
probability of a false positive, providing an ultra-reliable
backbone for datacenter services.

B. DCC-application interaction

DCCs are the building block of a novel practical model
for developing hybrid services, where distributed applications
running in a best-effort environment interact with a subsystem
substrate ensuring timely and reliable periodic interactions.
We anticipate that solutions will necessitate meticulous design
focused on a clear interface which can be conceptualized
as two bi-directional shared buffers between best-effort and
reliable “domains”. In practice, buffers are implemented via
high-bandwidth memory-mapped regions shared between end-
host and network device or in-between hardware modules.
Composition of reliable protocols in this model (only partially
explored by the theory community [21]) presents opportunities
but also challenges since designers need to take into account
unbounded access times to buffers. However, asynchronous
programs built on top of the DCC do not necessarily have
to directly meet tight timing constraints imposed by the
RCLK packet schedule and fast processing times of hardware-
offloaded programs. Instead, they interact with the properties
of an abstraction built within the DCC (i.e. reliability guaran-
tees), making composition no more complex than when using
purely asynchronous building blocks. One relevant example is
application failure detection which extends basic heartbeat FD
to detect custom failures. This is usually achieved by systems
which carefully monitor entire systems through probes and
complex notification schemes, ensuring broad coverage [32]
including gray failure detectors (GFDs) [33], which leverage

similar techniques to identify subtle malfunctions (e.g., dead-
locks). While DCC cannot address complex software failures
by default, it can be used to enhance the reliability and
performance of GFDs by ensuring low, reliable crash failure
detection down to the network level and also timely propaga-
tion of gray failure notifications by piggybacking them onto
RCLK packets. Through a reliable FD or simply by pushing
reliable periodic interactions to the network, DCCs offer an
out-of-the-box solution to improve reliability and efficiency of
both network-offloaded and software applications, enabling a
new hybrid stack to rethink about practical distributed systems.

C. Discussion

We discuss some implications of integrating DCCs into a
real-world system below.

• Reliability breaches. Clearly, there will always be a
probability that some unforeseen event will breach DCC
synchronous interactions hence hampering reliability, as
it is the case for protocols widely regarded as reliable
(e.g. TCP has the probability of 1 corrupt packet every
10 billion to go undetected at best [34]). Our goal is
to reduce this probability as much as possible through
concrete system design to provide stronger guarantees
for services which cannot circumvent reliable timeouts
and a low-risk alternative for more efficient distributed
coordination based on synchrony. Model extensions such
as the assumption of a correctly communicating quorum
as shown by XFT [35] or the inclusion of omission
failures [36] can be employed to further increase the
robustness of the model.

• Efficiency and reliability. DCC requires some network
resource reservation (e.g. priority queues) to ensure reli-
able time bounds. Contrarily to the common belief that
synchrony requires inconveniently large safety margins,
DCC relies on the predictability of hardware processing
and reliable network standards hence resulting in conve-
nient utilization of the reserved resources. Furthermore,
the network can be shared with application traffic in the
usual best-effort manner: programmers can size DCCs
according to the application need, offering a trade-off
between reliability and efficiency to highly available
applications. Moreover, the benefits of synchronous in-
teractions can outweigh reservation costs since they can
reduce complexity of costly asynchronous coordination
protocols (e.g. consensus) at the core of many distributed
services as well providing higher fault-tolerance.

• Scalability. DCC design can accommodate multiple ser-
vices which can either share a RCLK or leverage multiple
modules coexisting on the same network device since
modern network hardware such as FPGA-smartNICs
come with sufficient capacity for hundreds of small
modules. Designers can deploy custom scheduling algo-
rithms to coordinate simultaneous services with different
priorities, timeliness and reliability guarantees.



IV. CONCLUSION

We present the digital cluster circuit (DCC): a practical
system model/design which exploits programmable network
devices to establish reliable interactions in a subset of the
datacenter. Like in classical digital circuits, DCC nodes (i.e.
smartNICs, programmable switches) receive a periodic clock
signal in the form of ultra-low jitter packets. This allows for
robust timeouts, enabling a new class of reliable and efficient
services spanning best-effort applications and DCC modules.
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